Systems of Bellman Equations to Stochastic Differential Games with Discount Control
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 663-681

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider two dimensional diagonal elliptic systems $\Delta u + au = H(x, u, \nabla u)$ which arise from stochastic differential games with discount control. The Hamiltonians $H$ have quadratic growth in $\nabla u$ and a special structure which has notyet been covered by regularity theory. Without smallness condition on $H$, the existence of a regular solution is established.
@article{BUMI_2008_9_1_3_a8,
     author = {Bensoussan, Alain and Frehse, Jens},
     title = {Systems of {Bellman} {Equations} to {Stochastic} {Differential} {Games} with {Discount} {Control}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {663--681},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {3},
     year = {2008},
     zbl = {1190.49045},
     mrnumber = {2455338},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a8/}
}
TY  - JOUR
AU  - Bensoussan, Alain
AU  - Frehse, Jens
TI  - Systems of Bellman Equations to Stochastic Differential Games with Discount Control
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 663
EP  - 681
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a8/
LA  - en
ID  - BUMI_2008_9_1_3_a8
ER  - 
%0 Journal Article
%A Bensoussan, Alain
%A Frehse, Jens
%T Systems of Bellman Equations to Stochastic Differential Games with Discount Control
%J Bollettino della Unione matematica italiana
%D 2008
%P 663-681
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a8/
%G en
%F BUMI_2008_9_1_3_a8
Bensoussan, Alain; Frehse, Jens. Systems of Bellman Equations to Stochastic Differential Games with Discount Control. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 663-681. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a8/