Nonlinear Elliptic Equations with Lower Order Terms and Symmetrization Methods
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 645-661

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the homogeneous Dirichlet problem for nonlinear elliptic equations as \begin{equation*}-\operatorname{div} a(x, \nabla u) = b(x, \nabla u) + \mu \end{equation*} where $\mu$ is a measure with bounded total variation. We fix structural conditions on functions $a$, $b$ which ensure existence of solutions. Moreover, if $\mu$ is an $L^1$ function, we prove a uniqueness result under more restrictive hypotheses on the operator.
@article{BUMI_2008_9_1_3_a7,
     author = {Alvino, Angelo and Mercaldo, Anna},
     title = {Nonlinear {Elliptic} {Equations} with {Lower} {Order} {Terms} and {Symmetrization} {Methods}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {645--661},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {3},
     year = {2008},
     zbl = {1191.35125},
     mrnumber = {2455337},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a7/}
}
TY  - JOUR
AU  - Alvino, Angelo
AU  - Mercaldo, Anna
TI  - Nonlinear Elliptic Equations with Lower Order Terms and Symmetrization Methods
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 645
EP  - 661
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a7/
LA  - en
ID  - BUMI_2008_9_1_3_a7
ER  - 
%0 Journal Article
%A Alvino, Angelo
%A Mercaldo, Anna
%T Nonlinear Elliptic Equations with Lower Order Terms and Symmetrization Methods
%J Bollettino della Unione matematica italiana
%D 2008
%P 645-661
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a7/
%G en
%F BUMI_2008_9_1_3_a7
Alvino, Angelo; Mercaldo, Anna. Nonlinear Elliptic Equations with Lower Order Terms and Symmetrization Methods. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 645-661. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a7/