Nonlinear Elliptic Equations with Lower Order Terms and Symmetrization Methods
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 645-661
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We consider the homogeneous Dirichlet problem for nonlinear elliptic equations as \begin{equation*}-\operatorname{div} a(x, \nabla u) = b(x, \nabla u) + \mu \end{equation*} where $\mu$ is a measure with bounded total variation. We fix structural conditions on functions $a$, $b$ which ensure existence of solutions. Moreover, if $\mu$ is an $L^1$ function, we prove a uniqueness result under more restrictive hypotheses on the operator.
@article{BUMI_2008_9_1_3_a7,
author = {Alvino, Angelo and Mercaldo, Anna},
title = {Nonlinear {Elliptic} {Equations} with {Lower} {Order} {Terms} and {Symmetrization} {Methods}},
journal = {Bollettino della Unione matematica italiana},
pages = {645--661},
publisher = {mathdoc},
volume = {Ser. 9, 1},
number = {3},
year = {2008},
zbl = {1191.35125},
mrnumber = {2455337},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a7/}
}
TY - JOUR AU - Alvino, Angelo AU - Mercaldo, Anna TI - Nonlinear Elliptic Equations with Lower Order Terms and Symmetrization Methods JO - Bollettino della Unione matematica italiana PY - 2008 SP - 645 EP - 661 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a7/ LA - en ID - BUMI_2008_9_1_3_a7 ER -
%0 Journal Article %A Alvino, Angelo %A Mercaldo, Anna %T Nonlinear Elliptic Equations with Lower Order Terms and Symmetrization Methods %J Bollettino della Unione matematica italiana %D 2008 %P 645-661 %V 1 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a7/ %G en %F BUMI_2008_9_1_3_a7
Alvino, Angelo; Mercaldo, Anna. Nonlinear Elliptic Equations with Lower Order Terms and Symmetrization Methods. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 645-661. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a7/