Radial Heat Diffusion from the Root of a Homogeneous Tree and the Combinatorics of Paths
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 619-628.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We compute recursively the heat semigroup in a rooted homogeneous tree for the diffusion with radial (with respect to the root) but non-isotropic transition probabilities. This is the discrete analogue of the heat operator on the disc given by $\Delta + c \frac{\partial}{\partial r}$ for some constant $c$ that represents a drift towards (or away from) the origin.
@article{BUMI_2008_9_1_3_a5,
     author = {Cohen, Joel M. and Pagliacci, Mauro and Picardello, Massimo A.},
     title = {Radial {Heat} {Diffusion} from the {Root} of a {Homogeneous} {Tree} and the {Combinatorics} of {Paths}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {619--628},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {3},
     year = {2008},
     zbl = {1192.80004},
     mrnumber = {2455335},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a5/}
}
TY  - JOUR
AU  - Cohen, Joel M.
AU  - Pagliacci, Mauro
AU  - Picardello, Massimo A.
TI  - Radial Heat Diffusion from the Root of a Homogeneous Tree and the Combinatorics of Paths
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 619
EP  - 628
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a5/
LA  - en
ID  - BUMI_2008_9_1_3_a5
ER  - 
%0 Journal Article
%A Cohen, Joel M.
%A Pagliacci, Mauro
%A Picardello, Massimo A.
%T Radial Heat Diffusion from the Root of a Homogeneous Tree and the Combinatorics of Paths
%J Bollettino della Unione matematica italiana
%D 2008
%P 619-628
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a5/
%G en
%F BUMI_2008_9_1_3_a5
Cohen, Joel M.; Pagliacci, Mauro; Picardello, Massimo A. Radial Heat Diffusion from the Root of a Homogeneous Tree and the Combinatorics of Paths. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 619-628. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a5/

[1] I. Bajunaid - J.M. Cohen - F. Colonna - D. Singman, Function Series, Catalan Numbers and Random Walks on Trees, Amer. Math. Monthly, 112 (2005), 765-785. | DOI | MR | Zbl

[2] J.M. Cohen, M. Pagliacci, Explicit Solution for the Wave Equation on Homogeneous trees, Adv. Appl. Math., 15 (1994), 390-403. | DOI | MR | Zbl

[3] W. Feller, An Introduction to Probability Theory and its Applications, vol. 1, 3rd ed., John Wiley and Sons, New York, 1968. | MR | Zbl

[4] P. Gerl - W. Woess, Local Limits and Harmonic Functions for Non-isotropic Random Walks on Free Groups, Prob. Theory and Related Fields, 71 (1986), 341- 355. | DOI | MR | Zbl

[5] S.P. Lalley, Finite range Random Walks on Free Groups and Homogeneous Trees, Ann. Prob., 21 (1993), 2087-2130. | MR | Zbl

[6] M. Pagliacci, Heat and wave Equations on Homogeneous Trees, Boll. Un. Mat. It. (7) Sez. A, 7 (1993), 37-45. | MR | Zbl

[7] M. Pagliacci - M.A. Picardello, Heat Diffusion on Homogeneous Trees, Adv. Math. 110 (1995), 175-190. | DOI | MR | Zbl

[8] M.A. Picardello, Spherical Functions and Local Central Limit Theorems on Free Groups, Ann. Mat. Pura Appl., 133 (1983), 177-191. | DOI | MR | Zbl

[9] S. Sawyer, Isotropic Random Walks on a Tree, Z. Wahrsch. Verw. Gebiete, 42 (1978), 279-292. | DOI | MR | Zbl

[10] S. Sawyer - T. Steger, The Rate of Escape for Anisotropic Random Walks in a Tree, Prob. Theory and Related Fields, 76 (1987), 207-230. | DOI | MR | Zbl