The Quantitative Isoperimetric Inequality for Planar Convex Domains
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 573-589
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We prove that among all the convex bounded domains in $\mathbb{R}^2$ having an assigned Fraenkel asymmetry index, there exists only one convex set (up to a similarity) which minimizes the isoperimetric deficit. We show how to construct this set. The result can be read as a sharp improvement of the isoperimetric inequality for convex planar domains.
@article{BUMI_2008_9_1_3_a2,
author = {Nitsch, Carlo},
title = {The {Quantitative} {Isoperimetric} {Inequality} for {Planar} {Convex} {Domains}},
journal = {Bollettino della Unione matematica italiana},
pages = {573--589},
year = {2008},
volume = {Ser. 9, 1},
number = {3},
zbl = {1190.26025},
mrnumber = {2455332},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a2/}
}
Nitsch, Carlo. The Quantitative Isoperimetric Inequality for Planar Convex Domains. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 573-589. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a2/