The Quantitative Isoperimetric Inequality for Planar Convex Domains
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 573-589.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove that among all the convex bounded domains in $\mathbb{R}^2$ having an assigned Fraenkel asymmetry index, there exists only one convex set (up to a similarity) which minimizes the isoperimetric deficit. We show how to construct this set. The result can be read as a sharp improvement of the isoperimetric inequality for convex planar domains.
@article{BUMI_2008_9_1_3_a2,
     author = {Nitsch, Carlo},
     title = {The {Quantitative} {Isoperimetric} {Inequality} for {Planar} {Convex} {Domains}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {573--589},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {3},
     year = {2008},
     zbl = {1190.26025},
     mrnumber = {2455332},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a2/}
}
TY  - JOUR
AU  - Nitsch, Carlo
TI  - The Quantitative Isoperimetric Inequality for Planar Convex Domains
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 573
EP  - 589
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a2/
LA  - en
ID  - BUMI_2008_9_1_3_a2
ER  - 
%0 Journal Article
%A Nitsch, Carlo
%T The Quantitative Isoperimetric Inequality for Planar Convex Domains
%J Bollettino della Unione matematica italiana
%D 2008
%P 573-589
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a2/
%G en
%F BUMI_2008_9_1_3_a2
Nitsch, Carlo. The Quantitative Isoperimetric Inequality for Planar Convex Domains. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 573-589. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a2/

[1] A. Alvino - V. Ferone - C. Nitsch, The sharp isoperimetric inequality in the plane, preprint (2008). | DOI | MR | Zbl

[2] A. Alvino - P.-L. Lions - G. Trombetti, On optimization problems with prescribed rearrangements, Nonlinear Anal., Theory Methods Appl. 13 (1989), no. 2, 185-220. | DOI | MR | Zbl

[3] C. Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, 7. Boston, London, Melbourne: Pitman Advanced Publishing Program. X, 228 p., 1980. | MR | Zbl

[4] W. Blaschke, Kreis und Kugel, Leipzig: Veit u. Co., X u. 169 S. gr. 8°, 1916. | MR

[5] T. Bonnesen, Über eine Verscharfung der isoperimetrischen Ungleichheit des Kreises in der Ebene und auf der Kugeloberfläche nebst einer Anwendung auf eine Minkowskische Ungleichheit für konvexe Körper, Math. Ann. 84 (1921), no. 3-4, 216-227. | fulltext EuDML | DOI | MR | Zbl

[6] T. Bonnesen, Über das isoperimetrische Defizit ebener Figuren, Math. Ann. 91 (1924), no. 3-4, 252-268. | fulltext EuDML | DOI | MR

[7] T. Bonnesen, Les problèmes des isopérimètres et des isépiphanes, 175 p. Paris, Gauthier-Villars (Collection de monographies sur la théorie des fonctions), 1929.

[8] Yu. D. Burago - V.A. Zalgaller, Geometric inequalities. Transl. from the Russian by A. B. Sossinsky. Transl. from the Russian by A.B. Sossinsky, Grundlehren der Mathematischen Wissenschaften, 285. Berlin etc.: Springer-Verlag. XIV, 331 p., 1988. | DOI | MR | Zbl

[9] I. Chavel, Isoperimetric inequalities. Differential geometric and analytic perspectives, Cambridge Tracts in Mathematics. 145. Cambridge: Cambridge University Press. xii, 268 p. , 2001. | MR | Zbl

[10] E. De Giorgi, Sulla proprieta isoperimentrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., Sez. I, VIII. Ser. 5 (1958), 33-44. | MR | Zbl

[11] L. Esposito - N. Fusco - C. Trombetti, A quantitative version of the isoperimetric inequality: the anisotropic case, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 4 (2005), no. 4, 691-638. | fulltext EuDML | MR | Zbl

[12] A. Figalli - F. Maggi - A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, preprint (2007). | DOI | MR | Zbl

[13] B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in $\mathbb{R}^n$., Trans. Am. Math. Soc. 314 (1989), no. 2, 619-638. | DOI | MR | Zbl

[14] N. Fusco - F. Maggi - A. Pratelli, The sharp quantitative isoperimetric inequality, to appear on Ann. of Math. | DOI | MR | Zbl

[15] N. Fusco, The classical isoperimetric theorem, Rend. Acc. Sc. fis. mat. Napoli LXXI, (2004), 63-107. | MR | Zbl

[16] R.R. Hall, A quantitative isoperimetric inequality in n-dimensional space, J. Reine Angew. Math. 428 (1992), 161-175. | fulltext EuDML | DOI | MR | Zbl

[17] R.R. Hall - W.K. Hayman, A problem in the theory of subordination, J. Anal. Math. 60 (1993), 99-111. | DOI | MR | Zbl

[18] G.H. Hardy - J.E. Littlewood - G. Pólya, Inequalities. 2nd ed., 1st. paperback ed., Cambridge Mathematical Library. Cambridge (UK) etc.: Cambridge University Press. xii, 324 p., 1988. | MR

[19] A. Hurwitz, On the isoperimetric problem. (Sur le problème des isopérimètres.), C. R. 132 (1901), 401-403. | Zbl

[20] B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics. 1150. Berlin etc.: Springer-Verlag. V, 136 p. DM 21.50, 1985. | DOI | MR | Zbl

[21] H. Lebesgue, Lecons sur les séries trigonométriques professées au Collège de France, Paris: Gauthier-Villars. 125 S. 8 , 1906. | MR | Zbl

[22] R. Osserman, The isoperimetric inequality, Bull. Am. Math. Soc. 84 (1978), 1182- 1238. | DOI | MR | Zbl

[23] R. Osserman, Bonnesen-style isoperimetric inequalities., Am. Math. Mon. 86 (1979), 1-29. | DOI | MR | Zbl

[24] E. Stredulinsky - William P. Ziemer, Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal. 7 (1997), no. 4, 653-677. | DOI | MR | Zbl

[25] G. Talenti, Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 3 (1976), 697-718. | fulltext EuDML | MR | Zbl

[26] G. Talenti, Linear elliptic P.D.E.'s: Level sets. Rearrangements and a priori estimates of solutions, Boll. Unione Mat. Ital., VI. Ser., B 4 (1985), 917-949. | MR | Zbl

[27] G. Talenti, The standard isoperimetric theorem., Gruber, P. M. (ed.) et al., Hand-book of convex geometry. Volume A. Amsterdam: North-Holland. (1993), 73-123. | DOI | MR | Zbl