Diagonal Numerical Methods for Solving Lipschitz Global Optimization Problems
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 857-871
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
This paper briefly describes some results of the author's PhD thesis, which has been specially mentioned by the Italian INdAM-SIMAI Committee for the Competition "The Best PhD Thesis in Applied Mathematics defended in 2004-2006". In this work, a global optimization problem is considered where the objective function is a multidimensional black-box function satisfying the Lipschitz condition over a hyperinterval and hard to evaluate. Such functions are frequently encountered in practice that explains a great interest of researchers to the stated problem. A new diagonal scheme which is aimed for developing fast global optimization algorithms is presented, and several such algorithms are introduced and examined. Theoretical and experimental studies performed confirm the benefit of the new approach over traditionally used diagonal global optimization methods.
@article{BUMI_2008_9_1_3_a15,
author = {Kvasov, Dmitri E.},
title = {Diagonal {Numerical} {Methods} for {Solving} {Lipschitz} {Global} {Optimization} {Problems}},
journal = {Bollettino della Unione matematica italiana},
pages = {857--871},
publisher = {mathdoc},
volume = {Ser. 9, 1},
number = {3},
year = {2008},
zbl = {1190.65097},
mrnumber = {2455349},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a15/}
}
TY - JOUR AU - Kvasov, Dmitri E. TI - Diagonal Numerical Methods for Solving Lipschitz Global Optimization Problems JO - Bollettino della Unione matematica italiana PY - 2008 SP - 857 EP - 871 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a15/ LA - en ID - BUMI_2008_9_1_3_a15 ER -
Kvasov, Dmitri E. Diagonal Numerical Methods for Solving Lipschitz Global Optimization Problems. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 857-871. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a15/