Varieties of Algebras of Polynomial Growth
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 525-538
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $\mathcal{V}$ be a proper variety of associative algebras over a field $F$ of characteristic zero. It is well-known that $\mathcal{V}$ can have polynomial or exponential growth and here we present some classification results of varieties of polynomial growth. In particular we classify all subvarieties of the varieties of almost polynomial growth, i.e., the subvarieties of $\operatorname{\textbf{var}}(G)$ and $\operatorname{\textbf{var}}(UT_2)$, where $G$ is the Grassmann algebra and $UT_2$ is the algebra of $2 \times 2$ upper triangular matrices.
@article{BUMI_2008_9_1_3_a1,
author = {La Mattina, Daniela},
title = {Varieties of {Algebras} of {Polynomial} {Growth}},
journal = {Bollettino della Unione matematica italiana},
pages = {525--538},
publisher = {mathdoc},
volume = {Ser. 9, 1},
number = {3},
year = {2008},
zbl = {1204.16019},
mrnumber = {2455329},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a1/}
}
La Mattina, Daniela. Varieties of Algebras of Polynomial Growth. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 525-538. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a1/