Varieties of Algebras of Polynomial Growth
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 525-538

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $\mathcal{V}$ be a proper variety of associative algebras over a field $F$ of characteristic zero. It is well-known that $\mathcal{V}$ can have polynomial or exponential growth and here we present some classification results of varieties of polynomial growth. In particular we classify all subvarieties of the varieties of almost polynomial growth, i.e., the subvarieties of $\operatorname{\textbf{var}}(G)$ and $\operatorname{\textbf{var}}(UT_2)$, where $G$ is the Grassmann algebra and $UT_2$ is the algebra of $2 \times 2$ upper triangular matrices.
@article{BUMI_2008_9_1_3_a1,
     author = {La Mattina, Daniela},
     title = {Varieties of {Algebras} of {Polynomial} {Growth}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {525--538},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {3},
     year = {2008},
     zbl = {1204.16019},
     mrnumber = {2455329},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a1/}
}
TY  - JOUR
AU  - La Mattina, Daniela
TI  - Varieties of Algebras of Polynomial Growth
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 525
EP  - 538
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a1/
LA  - en
ID  - BUMI_2008_9_1_3_a1
ER  - 
%0 Journal Article
%A La Mattina, Daniela
%T Varieties of Algebras of Polynomial Growth
%J Bollettino della Unione matematica italiana
%D 2008
%P 525-538
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a1/
%G en
%F BUMI_2008_9_1_3_a1
La Mattina, Daniela. Varieties of Algebras of Polynomial Growth. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 525-538. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a1/