Varieties of Algebras of Polynomial Growth
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 525-538.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $\mathcal{V}$ be a proper variety of associative algebras over a field $F$ of characteristic zero. It is well-known that $\mathcal{V}$ can have polynomial or exponential growth and here we present some classification results of varieties of polynomial growth. In particular we classify all subvarieties of the varieties of almost polynomial growth, i.e., the subvarieties of $\operatorname{\textbf{var}}(G)$ and $\operatorname{\textbf{var}}(UT_2)$, where $G$ is the Grassmann algebra and $UT_2$ is the algebra of $2 \times 2$ upper triangular matrices.
@article{BUMI_2008_9_1_3_a1,
     author = {La Mattina, Daniela},
     title = {Varieties of {Algebras} of {Polynomial} {Growth}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {525--538},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {3},
     year = {2008},
     zbl = {1204.16019},
     mrnumber = {2455329},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a1/}
}
TY  - JOUR
AU  - La Mattina, Daniela
TI  - Varieties of Algebras of Polynomial Growth
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 525
EP  - 538
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a1/
LA  - en
ID  - BUMI_2008_9_1_3_a1
ER  - 
%0 Journal Article
%A La Mattina, Daniela
%T Varieties of Algebras of Polynomial Growth
%J Bollettino della Unione matematica italiana
%D 2008
%P 525-538
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a1/
%G en
%F BUMI_2008_9_1_3_a1
La Mattina, Daniela. Varieties of Algebras of Polynomial Growth. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 525-538. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a1/

[1] V. Drensky, Codimensions of T-ideals and Hilbert series of relatively free algebras, J. Algebra, 91, no 1 (1984), 1-17. | DOI | MR | Zbl

[2] V. Drensky, Relations for the cocharacter sequences of T-ideals, Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), 285-300, Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992. | MR | Zbl

[3] V. Drensky, Free algebras and PI-algebras, Graduate course in algebra, Springer-Verlag Singapore, Singapore, 2000. | MR | Zbl

[4] V. Drensky - A. Regev, Exact asymptotic behaviour of the codimensions of some P.I. algebras, Israel J. Math., 96 (1996), 231-242. | DOI | MR | Zbl

[5] A. Giambruno - D. La Mattina, PI-algebras with slow codimension growth, J. Algebra, 284 (2005), 371-391. | DOI | MR | Zbl

[6] A. Giambruno - D. La Mattina - V. M. Petrogradsky, Matrix algebras of polynomial codimension growth, Israel J. Math., 158 (2007), 367-378. | DOI | MR | Zbl

[7] A. Giambruno - M. Zaicev, On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998), 145-155. | DOI | MR | Zbl

[8] A. Giambruno - M. Zaicev, Exponential codimension growth of PI algebras: an exact estimate, Adv. Math., 142 (1999), 221-243. | DOI | MR | Zbl

[9] A. Giambruno - M. Zaicev, A characterization of algebras with polynomial growth of the codimensions, Proc. Amer. Math. Soc., 129 (2000), 59-67. | DOI | MR | Zbl

[10] A. Giambruno - M. Zaicev, Asymptotics for the standard and the Capelli identities, Israel J. Math., 135 (2003), 125-145. | DOI | MR | Zbl

[11] A. Giambruno - M. Zaicev, Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs Vol. 122, Amer. Math. Soc., Providence R.I., 2005. | DOI | MR | Zbl

[12] A. Guterman - A. Regev, On the growth of identities, Algebra (Moscow, 1998) de Gruyter, Berlin, (2000), 319-330. | MR | Zbl

[13] A. R. Kemer, T-ideals with power growth of the codimensions are Specht, Sibirsk. Mat. Zh., 19 (1978), 54-69 (in Russian), English translation: Sib. Math. J., 19 (1978), 37-48. | MR | Zbl

[14] A. R. Kemer, Varieties of finite rank., Proc. 15-th All the Union Algebraic Conf., Krasnoyarsk, Vol. 2 (1979), 73 (in Russian).

[15] D. Krakowski - A. Regev, The polynomial identities of the Grassmann algebra, Trans. Amer. Math. Soc., 181 (1973), 429-438. | DOI | MR | Zbl

[16] D. La Mattina, Varieties of almost polynomial growth: classifying their subvarieties, Manuscripta Math., 123 (2007), 185-203. | DOI | MR | Zbl

[17] Yu. N. Maltsev, A basis for the identities of the algebra of upper triangular matrices, (Russian) Algebra i Logika, 10 (1971), 242-247. | MR

[18] A. Regev, Existence of identities in $A \otimes B$, Israel J. Math., 11 (1972), 131-152. | DOI | MR | Zbl