Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2008_9_1_2_a6, author = {Conca, Aldo}, title = {Algebre di {Koszul}}, journal = {Bollettino della Unione matematica italiana}, pages = {429--437}, publisher = {mathdoc}, volume = {Ser. 9, 1}, number = {2}, year = {2008}, zbl = {1181.13012}, mrnumber = {2424302}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a6/} }
Conca, Aldo. Algebre di Koszul. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 2, pp. 429-437. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a6/
[A] A counterexample to a conjecture of Serre, Ann. of Math. (2), 115, no. 1 (1982), 1-33. | DOI | MR | Zbl
,[BHV] Syzygies and walks, ICTP Proceedings `Commutative Algebra', Eds. A. Simis, N. V. Trung, G. Valla, World Scientific 1994, 36-57. | MR
- - ,[B] A distributiveness property of augmented algebras and some related homological results, Ph.D. thesis, Stockholm University, 1982.
,[BF] Poincarè series of short Artinian rings. J. Algebra, 96, no. 2 (1985), 495-498. | DOI | MR
- ,[BF1] Veronese subrings, Koszul algebras and rings with linear resolutions. Rev. Roum. Pures Appl., 30 (1985), 85-97. | MR
- ,[Ca] The pinched Veronese is Koszul. preprint 2006, math. AC/0602487. | DOI | MR | Zbl
,[C] Gröbner bases for spaces of quadrics of low codimension. Adv. in Appl. Math., 24, no. 2 (2000), 111-124. | DOI | MR | Zbl
,[C1] Gröbner bases for spaces of quadrics of codimension 3, preprint 2007, arXiv:0709.3917. | DOI | MR
,[CRV] Groöbner flags and Gorenstein algebras. Compositio Math., 129, no. 1 (2001), 95-121. | DOI | MR | Zbl
- - ,[CTV] Koszul property for points in projective spaces, Math. Scand., 89 no. 2 (2001), 201-216. | DOI | MR | Zbl
- - ,[ERT] Initial ideals, Veronese subrings, and rates of algebras, Adv. Math., 109 (1994), 168-187. | DOI | MR | Zbl
- - ,[F] Koszul algebras, in "Advances in Commutative Ring Theory", Proc. Fez Conf. 1997, Lecture Notes in Pure and Applied Mathematics, volume 205, Dekker Eds., 1999.
,[HHR] Strongly Koszul algebras, Math. Scand., 86, no. 2 (2000), 161-178. | DOI | MR | Zbl
- - ,[K] Syzygies for points in projective space, J. Algebra, 145 (1992), 219-223. | DOI | MR | Zbl
,[PP] Canonical ring of a curve is Koszul: a simple proof, Illinois J. Math., 41, no. 2 (1997), 266-271. | MR | Zbl
- ,[P] On the Koszul property of the homogeneous coordinate ring of a curve, J. Algebra, 178, no. 1 (1995), 122-135. | DOI | MR | Zbl
,[P2] Koszul configurations of points in projective spaces. J. Algebra, 298, no. 1 (2006), 273-283. | DOI | MR | Zbl
,[R] A description of the homological behaviour of families of quadratic forms in four variables, in Syzygies and Geometry, Boston 1995, A. Iarrobino, A. Martsinkovsky and J. Weyman eds., pp. 86-95, Northeastern Univ. 1995.
,[RS] A toric ring with irrational Poincaré-Betti series, C. R. Acad. Sci. Paris Sér. I Math., 326, no. 2 (1998), 141-146. | DOI | MR | Zbl
- ,[S] Algébre locale. Multiplicités, Lecture Notes in Mathematics 11, Springer, 1965. | MR
,[VF] The coordinate ring of general curve of genus $g \geq 5$ is Koszul, J. Algebra, 162, no. 2 (1993), 535-539. | DOI | MR | Zbl
- ,