When does Agglutination Arise in the Homogeneization of Ordinary Differential Equations?
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 2, pp. 361-374.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

When dealing with Differential Equations whose coefficients are periodical, it is of interest to consider the limit when the period becomes shorter and shorter. This process is called homogeneization and leads to an equation with constant coefficients. The constants are some mean of the original coefficients, usually non trivial. We say that the mean is regular if it is increased whenever coefficients are increased on a non-zero set; on the contrary we say that agglutination arises if there are intervals of constancy. It is well known that a chessboard structure leads to agglutination. The authors give some sufficient conditions to prevent agglutination and show that some more general forms of mosaic can not save regularity.
@article{BUMI_2008_9_1_2_a4,
     author = {Bosa, Elena and Piccinini, Livio C.},
     title = {When does {Agglutination} {Arise} in the {Homogeneization} of {Ordinary} {Differential} {Equations?}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {361--374},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {2},
     year = {2008},
     zbl = {1164.74119},
     mrnumber = {2424299},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a4/}
}
TY  - JOUR
AU  - Bosa, Elena
AU  - Piccinini, Livio C.
TI  - When does Agglutination Arise in the Homogeneization of Ordinary Differential Equations?
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 361
EP  - 374
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a4/
LA  - en
ID  - BUMI_2008_9_1_2_a4
ER  - 
%0 Journal Article
%A Bosa, Elena
%A Piccinini, Livio C.
%T When does Agglutination Arise in the Homogeneization of Ordinary Differential Equations?
%J Bollettino della Unione matematica italiana
%D 2008
%P 361-374
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a4/
%G en
%F BUMI_2008_9_1_2_a4
Bosa, Elena; Piccinini, Livio C. When does Agglutination Arise in the Homogeneization of Ordinary Differential Equations?. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 2, pp. 361-374. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a4/

[1] S. Boettcher - M. Paczuski, Exact results for Spatiotemporal Correlations in a Self-organized Critical Model of Punctuated Equilibrium. Phys. Rev. Lett., 76 (1996), 348-351.

[2] S. Mortola - R. Peirone, Omogeneizzazione di una equazione differenziale ordinaria avente struttura a scacchiera. Rend. Mat. Acc. Lincei, 2 (1991), no. 1, 5-10. | fulltext EuDML

[3] R. Peirone, Rotation number of ODE's with a chessboard structure, Non linearity, 6, fasc 4 (1993), 617-652. | MR | Zbl

[4] L. C. Piccinini, Homogeneization for ordinary differential equations. Rend. Circ. Mat. Palermo, 27 (1978), 95-112. | DOI | MR | Zbl

[5] L. C. Piccinini, Linearity and non-linearity in the theory of G-convergence in Recent Advances in Differential Equations. Edit. R. Conti Academic Press New York (1981), 337-372. | MR

[6] L. C. Piccinini - G. Stampacchia - G. Vidosssich, Ordinary differential Equations in $\mathbb{R}^n$. Springer Verlag New York (1984), 187-202. Translation into English of Equazioni differenziali in $\mathbb{R}^n$, Liguori Ed. Napoli (1978). | DOI | MR