Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2008_9_1_2_a4, author = {Bosa, Elena and Piccinini, Livio C.}, title = {When does {Agglutination} {Arise} in the {Homogeneization} of {Ordinary} {Differential} {Equations?}}, journal = {Bollettino della Unione matematica italiana}, pages = {361--374}, publisher = {mathdoc}, volume = {Ser. 9, 1}, number = {2}, year = {2008}, zbl = {1164.74119}, mrnumber = {2424299}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a4/} }
TY - JOUR AU - Bosa, Elena AU - Piccinini, Livio C. TI - When does Agglutination Arise in the Homogeneization of Ordinary Differential Equations? JO - Bollettino della Unione matematica italiana PY - 2008 SP - 361 EP - 374 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a4/ LA - en ID - BUMI_2008_9_1_2_a4 ER -
%0 Journal Article %A Bosa, Elena %A Piccinini, Livio C. %T When does Agglutination Arise in the Homogeneization of Ordinary Differential Equations? %J Bollettino della Unione matematica italiana %D 2008 %P 361-374 %V 1 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a4/ %G en %F BUMI_2008_9_1_2_a4
Bosa, Elena; Piccinini, Livio C. When does Agglutination Arise in the Homogeneization of Ordinary Differential Equations?. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 2, pp. 361-374. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a4/
[1] Exact results for Spatiotemporal Correlations in a Self-organized Critical Model of Punctuated Equilibrium. Phys. Rev. Lett., 76 (1996), 348-351.
- ,[2] Omogeneizzazione di una equazione differenziale ordinaria avente struttura a scacchiera. Rend. Mat. Acc. Lincei, 2 (1991), no. 1, 5-10. | fulltext EuDML
- ,[3] Rotation number of ODE's with a chessboard structure, Non linearity, 6, fasc 4 (1993), 617-652. | MR | Zbl
,[4] Homogeneization for ordinary differential equations. Rend. Circ. Mat. Palermo, 27 (1978), 95-112. | DOI | MR | Zbl
,[5] Linearity and non-linearity in the theory of G-convergence in Recent Advances in Differential Equations. Edit. R. Conti Academic Press New York (1981), 337-372. | MR
,[6] Ordinary differential Equations in $\mathbb{R}^n$. Springer Verlag New York (1984), 187-202. Translation into English of Equazioni differenziali in $\mathbb{R}^n$, Liguori Ed. Napoli (1978). | DOI | MR
- - ,