Decomposition Results for Functions with Bounded Variation
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 2, pp. 497-505.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Some decomposition results for functions with bounded variation are obtained by using Gagliardo's Theorem on the surjectivity of the trace operator from $W^{1;1}(\Omega)$ into $L^1(\partial \Omega)$. More precisely, we prove that every BV function can be written as the sum of a BV function without jumps and a BV function without Cantor part. Alternatively, it can be written as the sum of a BV function without jumps and a purely singular BV function (i.e., a function whose gradient is singular with respect to the Lebesgue measure). It can also be decomposed as the sum of a purely singular BV function and a BV function without Cantor part. We also prove similar results for the space BD of functions with bounded deformation. In particular, we show that every BD function can be written as the sum of a BD function without jumps and a BV function without Cantor part. Therefore, every BD function without Cantor part is the sum of a function whose symmetrized gradient belongs to $L^1$ and a BV function without Cantor part.
@article{BUMI_2008_9_1_2_a11,
     author = {Dal Maso, Gianni and Toader, Rodica},
     title = {Decomposition {Results} for {Functions} with {Bounded} {Variation}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {497--505},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {2},
     year = {2008},
     zbl = {1256.49056},
     mrnumber = {2424307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a11/}
}
TY  - JOUR
AU  - Dal Maso, Gianni
AU  - Toader, Rodica
TI  - Decomposition Results for Functions with Bounded Variation
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 497
EP  - 505
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a11/
LA  - en
ID  - BUMI_2008_9_1_2_a11
ER  - 
%0 Journal Article
%A Dal Maso, Gianni
%A Toader, Rodica
%T Decomposition Results for Functions with Bounded Variation
%J Bollettino della Unione matematica italiana
%D 2008
%P 497-505
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a11/
%G en
%F BUMI_2008_9_1_2_a11
Dal Maso, Gianni; Toader, Rodica. Decomposition Results for Functions with Bounded Variation. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 2, pp. 497-505. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_2_a11/

[1] G. Alberti, A Lusin type property of gradients. J. Funct. Anal., 100 (1991), 110-118. | DOI | MR | Zbl

[2] L. Ambrosio - A. Coscia - G. Dal Maso, Fine properties of functions with bounded deformation. Arch. Rational Mech. Anal., 139 (1997), 201-238. | DOI | MR | Zbl

[3] L. Ambrosio - N. Fusco, - D. Pallara, Functions of bounded variation and free-discontinuity problems. Oxford Mathematical Monographs, 2000. | MR | Zbl

[4] E. Gagliardo, Caratterizzazione delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova, 27 (1957) 284-305. | fulltext EuDML | MR | Zbl

[5] E. Giusti, Minimal Surfaces and Functions of Bounded Variations. Monographs in Mathematics, Birkhauser, Boston, 1984. | DOI | MR | Zbl

[6] R. Temam, Problèmes mathématiques en plasticité. Gauthier-Villars, Paris, 1983. | MR | Zbl