Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2008_9_1_1_a9, author = {Mingione, Giuseppe and Anna, Zatorska-Goldstein and Zhong, Xiao}, title = {On the {Regularity} of {p-Harmonic} {Functions} in the {Heisenberg} {Group}}, journal = {Bollettino della Unione matematica italiana}, pages = {243--253}, publisher = {mathdoc}, volume = {Ser. 9, 1}, number = {1}, year = {2008}, zbl = {1164.35039}, mrnumber = {2388006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a9/} }
TY - JOUR AU - Mingione, Giuseppe AU - Anna, Zatorska-Goldstein AU - Zhong, Xiao TI - On the Regularity of p-Harmonic Functions in the Heisenberg Group JO - Bollettino della Unione matematica italiana PY - 2008 SP - 243 EP - 253 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a9/ LA - en ID - BUMI_2008_9_1_1_a9 ER -
%0 Journal Article %A Mingione, Giuseppe %A Anna, Zatorska-Goldstein %A Zhong, Xiao %T On the Regularity of p-Harmonic Functions in the Heisenberg Group %J Bollettino della Unione matematica italiana %D 2008 %P 243-253 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a9/ %G en %F BUMI_2008_9_1_1_a9
Mingione, Giuseppe; Anna, Zatorska-Goldstein; Zhong, Xiao. On the Regularity of p-Harmonic Functions in the Heisenberg Group. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 243-253. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a9/
[1] Gradient estimates for the $p(x)$-Laplacean system, J. reine ang. Math. (Crelles) 584 (2005), 117-148 | DOI | MR | Zbl
- ,[2] A regularity theory for scalar local minimizers of splitting-type variational integrals, Ann. Scu. Norm. Sup. Pisa, Cl. Sci. (5), to appear | fulltext EuDML | MR | Zbl
- - ,[3] $L^p$ estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc. 352 (2000), 781-822. | DOI | MR | Zbl
- ,[4] On $W^{1,p)}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math. 51 (1998), 1-21. | DOI | MR
- ,[5] Regularity of quasi-linear equations in the Heisenberg group, Comm. Pure Appl. Math. 50 (1997), 867-889. | DOI | MR | Zbl
,[6] An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. P.D.E 18 (1993), 1765-1794. | DOI | MR | Zbl
- - ,[7] Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hormander type, J. Eur. Math. Soc. (JEMS) 5 (2003), 1-40. | fulltext EuDML | DOI | MR | Zbl
- ,[8] Sharp global bounds for the Hessian on pseudo-Hermitian manifolds Preprint 2006. | DOI | MR | Zbl
- ,[9] $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), 841-853. | DOI | MR | Zbl
- - ,[10] On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math. 115 (1993), 1107-1134. | DOI | MR | Zbl
- ,[11] Differentiability of solutions for the non-degenerate p-Laplacian in the Heisenberg group, J. Differential Equations, 204 (2004), 439-470. | DOI | MR | Zbl
,[12] Subelliptic Cordes estimates, Proc. Amer. Math. Soc. 133 (2005), 1047-1056. | DOI | MR | Zbl
- ,[13] $C^{1,\alpha}$-regularity for $p$-harmonic functions in the Heisenberg group for $p$ near 2, Contemp. Math. 370 (2005), 17-23. | DOI | MR | Zbl
- ,[14] Regularity for minimizers of irregular integrals with $(p, q)$-growth, Forum Mathematicum 14 (2002), 245-272. | DOI | MR | Zbl
- - ,[15] Sharp regularity for functionals with $(p, q)$ growth, J. Differential Equations 204 (2004), 5-55. | DOI | MR | Zbl
- - ,[16] Partial regularity results for sub-elliptic systems in the Heisenberg group, Calc. Var. - PDE, to appear. | DOI | MR
,[17] Applications of analysis on nilpotent groups to partial differential equations, Bulletin of AMS 83 (1977), 912-930. | DOI | MR | Zbl
,[18] Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. | DOI | MR | Zbl
,[19] Hypoelliptic second order differential equations, Acta Mathematica 119 (1967), 147-171. | DOI | MR
,[20] Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators, Studia Math. 75 (1983), 293-312. | fulltext EuDML | DOI | MR | Zbl
,[21] Weak minima of variational integrals. J. reine angew. math. (Crelle J.) 454 (1994), 143-161. | fulltext EuDML | DOI | MR | Zbl
- ,[22] Pseudo-differential operators and hypoellipticity. Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), 61-69. | MR
,[23] The singular set of minima of integral functionals, Arch. Ration. Mech. Anal. 180 (2006), 331-398. | DOI | MR | Zbl
- ,[24] Linear and quasilinear elliptic equations, Academic Press, New York-London 1968. | MR
- ,[25] Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations, Publ. Mat. 40 (1996), 301-329 | fulltext EuDML | DOI | MR | Zbl
,[26] Regularity results for quasilinear elliptic equations in the Heisenberg Group, Mathematische Annalen, 339 (2007) | DOI | MR | Zbl
- ,[27] Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 1-25. | fulltext EuDML | MR | Zbl
,[28] $C^{1,\alpha}$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group for $2 \leq p \leq \sqrt{5}$, Z. Anal. Anwendungen, 20 (2001), 617-636. Erratum: Z. Anal. Anwendungen, 22 (2003), 471-472. | DOI | MR | Zbl
,[29] Gradient regularity for elliptic equations in the Heisenberg Group. Arxiv Preprint, 2007. | DOI | MR
- - ,