On the Regularity of p-Harmonic Functions in the Heisenberg Group
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 243-253.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We describe some recent results obtained in [29], where we prove regularity theorems for sub-elliptic equations in (horizontal) divergence form defined in the Heisenberg group, and exhibiting polynomial growth of order p. The main result tells that when $p \in [2,4)$ solutions to possibly degenerate equations are locally Lipschitz continuous with respect to the intrinsic distance. In particular, such result applies to p-harmonic functions in the Heisenberg group. Explicit estimates are obtained, and eventually applied to obtain the suitable Calderón-Zygmund theory for the associated non-homogeneous problems.
Descriviamo alcuni recenti risultati ottenuti in [29], dove si dimostrano teoremi di regolarità per soluzioni di equazioni sub-ellittiche in forma di divergenza orizzontale, nel gruppo di Heisenberg. I risultati coprono il caso di operatori a crescita p, come il p-Laplaciano nel gruppo di Heisenberg, e sono ottenuti sotto l'ipotesi adimensionale $p \in [2,4)$.
@article{BUMI_2008_9_1_1_a9,
     author = {Mingione, Giuseppe and Anna, Zatorska-Goldstein and Zhong, Xiao},
     title = {On the {Regularity} of {p-Harmonic} {Functions} in the {Heisenberg} {Group}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {243--253},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {1},
     year = {2008},
     zbl = {1164.35039},
     mrnumber = {2388006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a9/}
}
TY  - JOUR
AU  - Mingione, Giuseppe
AU  - Anna, Zatorska-Goldstein
AU  - Zhong, Xiao
TI  - On the Regularity of p-Harmonic Functions in the Heisenberg Group
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 243
EP  - 253
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a9/
LA  - en
ID  - BUMI_2008_9_1_1_a9
ER  - 
%0 Journal Article
%A Mingione, Giuseppe
%A Anna, Zatorska-Goldstein
%A Zhong, Xiao
%T On the Regularity of p-Harmonic Functions in the Heisenberg Group
%J Bollettino della Unione matematica italiana
%D 2008
%P 243-253
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a9/
%G en
%F BUMI_2008_9_1_1_a9
Mingione, Giuseppe; Anna, Zatorska-Goldstein; Zhong, Xiao. On the Regularity of p-Harmonic Functions in the Heisenberg Group. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 243-253. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a9/

[1] E. Acerbi - G. Mingione, Gradient estimates for the $p(x)$-Laplacean system, J. reine ang. Math. (Crelles) 584 (2005), 117-148 | DOI | MR | Zbl

[2] M. Bildhauer - M. Fuchs - X. Zhong, A regularity theory for scalar local minimizers of splitting-type variational integrals, Ann. Scu. Norm. Sup. Pisa, Cl. Sci. (5), to appear | fulltext EuDML | MR | Zbl

[3] M. Bramanti - L. Brandolini, $L^p$ estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc. 352 (2000), 781-822. | DOI | MR | Zbl

[4] L. Caffarelli - I. Peral, On $W^{1,p)}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math. 51 (1998), 1-21. | DOI | MR

[5] L. Capogna, Regularity of quasi-linear equations in the Heisenberg group, Comm. Pure Appl. Math. 50 (1997), 867-889. | DOI | MR | Zbl

[6] L. Capogna - D. Danielli - N. Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. P.D.E 18 (1993), 1765-1794. | DOI | MR | Zbl

[7] L. Capogna - N. Garofalo, Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hormander type, J. Eur. Math. Soc. (JEMS) 5 (2003), 1-40. | fulltext EuDML | DOI | MR | Zbl

[8] S. Chanillo - J. J. Manfredi, Sharp global bounds for the Hessian on pseudo-Hermitian manifolds Preprint 2006. | DOI | MR | Zbl

[9] F. Chiarenza - M. Frasca - P. Longo, $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), 841-853. | DOI | MR | Zbl

[10] E. Dibenedetto - J. J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math. 115 (1993), 1107-1134. | DOI | MR | Zbl

[11] A. Domokos, Differentiability of solutions for the non-degenerate p-Laplacian in the Heisenberg group, J. Differential Equations, 204 (2004), 439-470. | DOI | MR | Zbl

[12] A. Domokos - J. J. Manfredi, Subelliptic Cordes estimates, Proc. Amer. Math. Soc. 133 (2005), 1047-1056. | DOI | MR | Zbl

[13] A. Domokos - J. J. Manfredi, $C^{1,\alpha}$-regularity for $p$-harmonic functions in the Heisenberg group for $p$ near 2, Contemp. Math. 370 (2005), 17-23. | DOI | MR | Zbl

[14] L. Esposito - F. Leonetti - G. Mingione, Regularity for minimizers of irregular integrals with $(p, q)$-growth, Forum Mathematicum 14 (2002), 245-272. | DOI | MR | Zbl

[15] L. Esposito - F. Leonetti - G. Mingione, Sharp regularity for functionals with $(p, q)$ growth, J. Differential Equations 204 (2004), 5-55. | DOI | MR | Zbl

[16] A. Föglein, Partial regularity results for sub-elliptic systems in the Heisenberg group, Calc. Var. - PDE, to appear. | DOI | MR

[17] G. B. Folland, Applications of analysis on nilpotent groups to partial differential equations, Bulletin of AMS 83 (1977), 912-930. | DOI | MR | Zbl

[18] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. | DOI | MR | Zbl

[19] L. Hörmander, Hypoelliptic second order differential equations, Acta Mathematica 119 (1967), 147-171. | DOI | MR

[20] T. Iwaniec, Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators, Studia Math. 75 (1983), 293-312. | fulltext EuDML | DOI | MR | Zbl

[21] T. Iwaniec - C. Sbordone, Weak minima of variational integrals. J. reine angew. math. (Crelle J.) 454 (1994), 143-161. | fulltext EuDML | DOI | MR | Zbl

[22] J. J. Kohn, Pseudo-differential operators and hypoellipticity. Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), 61-69. | MR

[23] J. Kristensen - G. Mingione, The singular set of minima of integral functionals, Arch. Ration. Mech. Anal. 180 (2006), 331-398. | DOI | MR | Zbl

[24] O. A. Ladyzhenskaya - N. N. Ural'Tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London 1968. | MR

[25] G. Lu, Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations, Publ. Mat. 40 (1996), 301-329 | fulltext EuDML | DOI | MR | Zbl

[26] J. J. Manfredi - G. Mingione, Regularity results for quasilinear elliptic equations in the Heisenberg Group, Mathematische Annalen, 339 (2007) | DOI | MR | Zbl

[27] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 1-25. | fulltext EuDML | MR | Zbl

[28] S. Marchi, $C^{1,\alpha}$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group for $2 \leq p \leq \sqrt{5}$, Z. Anal. Anwendungen, 20 (2001), 617-636. Erratum: Z. Anal. Anwendungen, 22 (2003), 471-472. | DOI | MR | Zbl

[29] G. Mingione - A. Zatorska-Goldstein - X. Zhong, Gradient regularity for elliptic equations in the Heisenberg Group. Arxiv Preprint, 2007. | DOI | MR