A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 197-221
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
The energy of magneto-elastic materials is described by a nonconvex functional. Three terms of the total free energy are taken into account: the exchange energy, the elastic energy and the magneto-elastic energy usually adopted for cubic crystals. We focus our attention to a one dimensional penalty problem and study the gradient flow of the associated type Ginzburg-Landau functional. We prove the existence and uniqueness of a classical solution which tends asymptotically for subsequences to a stationary point of the energy functional.
@article{BUMI_2008_9_1_1_a7,
author = {Chipot, M. and Shafrir, I. and Vergara Caffarelli, G.},
title = {A {Nonlocal} {Problem} {Arising} in the {Study} of {Magneto-Elastic} {Interactions}},
journal = {Bollettino della Unione matematica italiana},
pages = {197--221},
publisher = {mathdoc},
volume = {Ser. 9, 1},
number = {1},
year = {2008},
zbl = {1164.49013},
mrnumber = {2388004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a7/}
}
TY - JOUR AU - Chipot, M. AU - Shafrir, I. AU - Vergara Caffarelli, G. TI - A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions JO - Bollettino della Unione matematica italiana PY - 2008 SP - 197 EP - 221 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a7/ LA - en ID - BUMI_2008_9_1_1_a7 ER -
%0 Journal Article %A Chipot, M. %A Shafrir, I. %A Vergara Caffarelli, G. %T A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions %J Bollettino della Unione matematica italiana %D 2008 %P 197-221 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a7/ %G en %F BUMI_2008_9_1_1_a7
Chipot, M.; Shafrir, I.; Vergara Caffarelli, G. A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 197-221. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a7/