A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 197-221.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The energy of magneto-elastic materials is described by a nonconvex functional. Three terms of the total free energy are taken into account: the exchange energy, the elastic energy and the magneto-elastic energy usually adopted for cubic crystals. We focus our attention to a one dimensional penalty problem and study the gradient flow of the associated type Ginzburg-Landau functional. We prove the existence and uniqueness of a classical solution which tends asymptotically for subsequences to a stationary point of the energy functional.
Si studia il funzionale non convesso che descrive l'energia di un materiale magneto-elastico. Sono considerati tre termini energetici: l'energia di scambio, l'energia elastica e l'energia magneto-elastica generalmente adottata per cristalli cubici. Si introduce un problema penalizzato monodimensionale e si studia il flusso di gradiente dell'associato funzionale del tipo Ginzburg-Landau. Si prova l'esistenza e la unicità di una soluzione classica che tende asintoticamente, per sottosuccessione, a un punto stazionario del funzionale dell'energia.
@article{BUMI_2008_9_1_1_a7,
     author = {Chipot, M. and Shafrir, I. and Vergara Caffarelli, G.},
     title = {A {Nonlocal} {Problem} {Arising} in the {Study} of {Magneto-Elastic} {Interactions}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {197--221},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {1},
     year = {2008},
     zbl = {1164.49013},
     mrnumber = {2388004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a7/}
}
TY  - JOUR
AU  - Chipot, M.
AU  - Shafrir, I.
AU  - Vergara Caffarelli, G.
TI  - A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 197
EP  - 221
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a7/
LA  - en
ID  - BUMI_2008_9_1_1_a7
ER  - 
%0 Journal Article
%A Chipot, M.
%A Shafrir, I.
%A Vergara Caffarelli, G.
%T A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions
%J Bollettino della Unione matematica italiana
%D 2008
%P 197-221
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a7/
%G en
%F BUMI_2008_9_1_1_a7
Chipot, M.; Shafrir, I.; Vergara Caffarelli, G. A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 197-221. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a7/

[1] M. Bertsch - P. Podio-Guidugli - V. Valente, On the dynamics of deformable ferromagnets. I. Global weak solutions for soft ferromagnets at rest, Ann. Mat. Pura Appl., 179 (2001), 331-360. | DOI | MR | Zbl

[2] F. Bethuel - H. Brezis - B. D. Coleman - F. Hélein, Bifurcation analysis of minimizing harmonic maps describing the equilibrium of nematic phases between cylinders, Arch. Ration. Mech. Anal., 118 (1992), 149-168. | DOI | MR | Zbl

[3] W. F. Brown, Micromagnetics, John Wiley and Sons (Interscience), 1963.

[4] W. F. Brown, Magnetoelastic Interactions, Springer Tracts in Natural Philosophy, 9, Springer Verlag, 1966.

[5] A. Desimone - G. Dolzmann, Existence of minimizers for a variational problem in two-dimensional nonlinear magnetoelasticity, Arch. Rational Mech. Anal., 144 (1998), 107-120. | DOI | MR | Zbl

[6] A. Desimone - R. D. James, A constrained theory of magnetoelasticity, J. Mech. Phys. Solids, 50 (2002), 283-320. | DOI | MR | Zbl

[7] S. He, Modélisation et simulation numérique de matériaux magnétostrictifs, PhD thesis, Université Pierre et Marie Currie, 1999.

[8] D. Kinderlehrer, Magnetoelastic interactions. Variational methods for discontinuous structures, Prog. Nonlinear Differential Equations Appl., Birkhauser Basel, 25, (1996), 177-189. | MR

[9] V. Valente - G. Vergara Caffarelli, On the dynamics of magneto-elastic interations: existence of weak solutions and limit behaviors, Asymptotic Analysis, 51 (2007), 319-333. | MR | Zbl