Remarks on the Fractal Dimension of Bi-Space Global and Exponential Attractors
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 121-145.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Bi-space global and exponential attractors for the time continuous dynamical systems are considered and the bounds on their fractal dimension are discussed in the context of the smoothing properties of the system between appropriately chosen function spaces. The case when the system exhibits merely some partial smoothing properties is also considered and applications to the sample problems are given.
In questo lavoro sono considerate le nozioni di attrattori globali ed esponenziali "bi-space" per sistemi dinamici continui, e discusse limitazioni relative alla loro dimensione frattale in spazi di funzioni opportuni. Di particolare interesse è il caso in cui il sistema presenta un parziale effetto regolarizzante, ed alcuni esempi con questa proprietà sono mostrati.
@article{BUMI_2008_9_1_1_a5,
     author = {Cholewa, Jan W. and Czaja, Radoslaw and Mola, Gianluca},
     title = {Remarks on the {Fractal} {Dimension} of {Bi-Space} {Global} and {Exponential} {Attractors}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {121--145},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {1},
     year = {2008},
     zbl = {1213.37111},
     mrnumber = {2388001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a5/}
}
TY  - JOUR
AU  - Cholewa, Jan W.
AU  - Czaja, Radoslaw
AU  - Mola, Gianluca
TI  - Remarks on the Fractal Dimension of Bi-Space Global and Exponential Attractors
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 121
EP  - 145
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a5/
LA  - en
ID  - BUMI_2008_9_1_1_a5
ER  - 
%0 Journal Article
%A Cholewa, Jan W.
%A Czaja, Radoslaw
%A Mola, Gianluca
%T Remarks on the Fractal Dimension of Bi-Space Global and Exponential Attractors
%J Bollettino della Unione matematica italiana
%D 2008
%P 121-145
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a5/
%G en
%F BUMI_2008_9_1_1_a5
Cholewa, Jan W.; Czaja, Radoslaw; Mola, Gianluca. Remarks on the Fractal Dimension of Bi-Space Global and Exponential Attractors. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 121-145. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a5/

[1] J. M. Arrieta - J. W. Cholewa - T. Dlotko - A. Rodriâguez-Bernal, Dissipative parabolic equations in locally uniform spaces, Math. Nachr., 280 (2007), 1643-1663. | DOI | MR | Zbl

[2] H. Amann, Global existence for semilinear parabolic systems, J. Reine Angew. Math., 360 (1985), 47-83. | fulltext EuDML | DOI | MR | Zbl

[3] A. V. Babin - M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992. | MR | Zbl

[4] A. N. Carvalho - J. W. Cholewa, Local well posedness for strongly damped wave equations with critical nonlinearities, Bulletin of the Australian Mathematical Society, 66 (2002), 443-463. | DOI | MR | Zbl

[5] A. N. Carvalho - J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities, Pacific Journal of Mathematics, 207 (2002), 287-310. | DOI | MR | Zbl

[6] A. N. Carvalho - J. W. Cholewa, Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities, J. Math. Anal. Appl., 310 (2005), 557-578. | DOI | MR | Zbl

[7] S. Chen - R. Triggiani, Proof of two conjectures on structural damping for elastic systems: The case a=1/2, Lecture Notes in Mathematics 1354, Springer, 1988, 234-256. | DOI | MR

[8] J. W. Cholewa - T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000. | DOI | MR | Zbl

[9] M. Conti - V. Pata - M. Squassina, Singular limit of differential systems with memory, Indiana Univ. Math. J., 55 (2006), 169-215. | DOI | MR | Zbl

[10] L. Dung - B. Nicolaenko, Exponential attractors in Banach spaces, J. Dynam. Differential Equations, 13 (2001), 791-806. | DOI | MR | Zbl

[11] A. Eden - C. Foias - B. Nicolaenko - R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley and Sons, Ltd., Chichester, 1994. | MR | Zbl

[12] M. Efendiev - A. Miranville - S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$ , C. R. Acad. Sci. Paris Sr. I Math., 330 (2000), 713- 718. | DOI | MR | Zbl

[13] P. Fabrie - C. Galusinski - A. Miranville - S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Cont. Dyn. Systems, 10 (2004), 211-238. | DOI | MR | Zbl

[14] S. Gatti - M. Grasselli - A. Miranville - V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117-127. | DOI | MR | Zbl

[15] S. Gatti - M. Grasselli - V. Pata, Exponential attractors for a phase-field model with memory and quadratic nonlinearities, Indiana Univ. Math. J., 53 (2004), 719- 754. | DOI | MR | Zbl

[16] J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, R.I., 1988. | MR

[17] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981. | MR | Zbl

[18] O. A. Ladyženskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.

[19] O. A. Ladyženskaya - V. A. Solonnikov - N. N. Ural'Ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, AMS, Providence, R.I., 1967. | MR

[20] De-Sheng Li - Chen-Kui Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity, J. Diff. Equations, 149 (1998), 191-210. | DOI | MR | Zbl

[21] J. Málek - D. Pražak, Large time behavior via the method of $\ell$-trajectories, J. Diff. Equations, 181 (2002), 243-279. | DOI | MR

[22] G. Mola, Global attractors for a three-dimensional conserved phase-field system with memory, Commun. Pure Appl. Anal., to appear. | DOI | MR | Zbl

[23] G. Mola, Stability of global and exponential attractors for a three-dimensional conserved phase-field system with memory, submitted. | DOI | MR | Zbl

[24] V. Pata - M. Squassina, On the strongly damped wave equation, Comm. Math. Phys., 253 (2005), 511-533. | DOI | MR | Zbl

[25] V. Pata - S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506. | DOI | MR | Zbl

[26] V. Pata - S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486. | DOI | MR | Zbl

[27] V. Pata - A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529. | MR | Zbl

[28] P. Poláčik, Parabolic equations: asymptotic behavior and dynamics on invariant manifolds, in: Handbook of Dynamical Systems Vol. 2, North-Holland, Amsterdam, 2002, 835-883.

[29] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988. | DOI | MR | Zbl

[30] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Veb Deutscher, Berlin, 1978. | MR

[31] W. Von Wahl, Global solutions to evolution equations of parabolic type, in: Differential Equations in Banach Spaces, Proceedings, 1985, Springer-Verlag, Berlin, 1986, 254-266. | DOI | MR

[32] G. F. Webb, Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Can. J. Math., 32 (1980), 631-643. | DOI | MR | Zbl