Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2008_9_1_1_a5, author = {Cholewa, Jan W. and Czaja, Radoslaw and Mola, Gianluca}, title = {Remarks on the {Fractal} {Dimension} of {Bi-Space} {Global} and {Exponential} {Attractors}}, journal = {Bollettino della Unione matematica italiana}, pages = {121--145}, publisher = {mathdoc}, volume = {Ser. 9, 1}, number = {1}, year = {2008}, zbl = {1213.37111}, mrnumber = {2388001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a5/} }
TY - JOUR AU - Cholewa, Jan W. AU - Czaja, Radoslaw AU - Mola, Gianluca TI - Remarks on the Fractal Dimension of Bi-Space Global and Exponential Attractors JO - Bollettino della Unione matematica italiana PY - 2008 SP - 121 EP - 145 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a5/ LA - en ID - BUMI_2008_9_1_1_a5 ER -
%0 Journal Article %A Cholewa, Jan W. %A Czaja, Radoslaw %A Mola, Gianluca %T Remarks on the Fractal Dimension of Bi-Space Global and Exponential Attractors %J Bollettino della Unione matematica italiana %D 2008 %P 121-145 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a5/ %G en %F BUMI_2008_9_1_1_a5
Cholewa, Jan W.; Czaja, Radoslaw; Mola, Gianluca. Remarks on the Fractal Dimension of Bi-Space Global and Exponential Attractors. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 121-145. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a5/
[1] Dissipative parabolic equations in locally uniform spaces, Math. Nachr., 280 (2007), 1643-1663. | DOI | MR | Zbl
- - - ,[2] Global existence for semilinear parabolic systems, J. Reine Angew. Math., 360 (1985), 47-83. | fulltext EuDML | DOI | MR | Zbl
,[3] Attractors of Evolution Equations, North-Holland, Amsterdam, 1992. | MR | Zbl
- ,[4] Local well posedness for strongly damped wave equations with critical nonlinearities, Bulletin of the Australian Mathematical Society, 66 (2002), 443-463. | DOI | MR | Zbl
- ,[5] Attractors for strongly damped wave equations with critical nonlinearities, Pacific Journal of Mathematics, 207 (2002), 287-310. | DOI | MR | Zbl
- ,[6] Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities, J. Math. Anal. Appl., 310 (2005), 557-578. | DOI | MR | Zbl
- ,[7] Proof of two conjectures on structural damping for elastic systems: The case a=1/2, Lecture Notes in Mathematics 1354, Springer, 1988, 234-256. | DOI | MR
- ,[8] Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000. | DOI | MR | Zbl
- ,[9] Singular limit of differential systems with memory, Indiana Univ. Math. J., 55 (2006), 169-215. | DOI | MR | Zbl
- - ,[10] Exponential attractors in Banach spaces, J. Dynam. Differential Equations, 13 (2001), 791-806. | DOI | MR | Zbl
- ,[11] Exponential Attractors for Dissipative Evolution Equations, John Wiley and Sons, Ltd., Chichester, 1994. | MR | Zbl
- - - ,[12] Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$ , C. R. Acad. Sci. Paris Sr. I Math., 330 (2000), 713- 718. | DOI | MR | Zbl
- - ,[13] Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Cont. Dyn. Systems, 10 (2004), 211-238. | DOI | MR | Zbl
- - - ,[14] A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117-127. | DOI | MR | Zbl
- - - ,[15] Exponential attractors for a phase-field model with memory and quadratic nonlinearities, Indiana Univ. Math. J., 53 (2004), 719- 754. | DOI | MR | Zbl
- - ,[16] Asymptotic Behavior of Dissipative Systems, AMS, Providence, R.I., 1988. | MR
,[17] Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981. | MR | Zbl
,[18] Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.
,[19] Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, AMS, Providence, R.I., 1967. | MR
- - ,[20] Global attractor for the Cahn-Hilliard system with fast growing nonlinearity, J. Diff. Equations, 149 (1998), 191-210. | DOI | MR | Zbl
- ,[21] Large time behavior via the method of $\ell$-trajectories, J. Diff. Equations, 181 (2002), 243-279. | DOI | MR
- ,[22] Global attractors for a three-dimensional conserved phase-field system with memory, Commun. Pure Appl. Anal., to appear. | DOI | MR | Zbl
,[23] Stability of global and exponential attractors for a three-dimensional conserved phase-field system with memory, submitted. | DOI | MR | Zbl
,[24] On the strongly damped wave equation, Comm. Math. Phys., 253 (2005), 511-533. | DOI | MR | Zbl
- ,[25] Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506. | DOI | MR | Zbl
- ,[26] A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), 481-486. | DOI | MR | Zbl
- ,[27] Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529. | MR | Zbl
- ,[28] Parabolic equations: asymptotic behavior and dynamics on invariant manifolds, in: Handbook of Dynamical Systems Vol. 2, North-Holland, Amsterdam, 2002, 835-883.
,[29] Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988. | DOI | MR | Zbl
,[30] Interpolation Theory, Function Spaces, Differential Operators, Veb Deutscher, Berlin, 1978. | MR
,[31] Global solutions to evolution equations of parabolic type, in: Differential Equations in Banach Spaces, Proceedings, 1985, Springer-Verlag, Berlin, 1986, 254-266. | DOI | MR
,[32] Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Can. J. Math., 32 (1980), 631-643. | DOI | MR | Zbl
,