A Note on Sectorial and R-Sectorial Operators
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 79-85.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The following results are proved: (i) if $\alpha$, $\beta \in \mathbb{R}^+$ and $A$ is a sectorial operator, then the set $\{t^{\alpha}A^{\beta}(t+A); t>0 \}$ is bounded; (ii) the same set of operators is R-bounded if $A$ is R-sectorial.
Si dimostra che: (i) se $\alpha$, $\beta \in \mathbb{R}^+$ e $A$ è un operatore settoriale, allora l'insieme $\{t^{\alpha}A^{\beta}(t+A); t>0 \}$ è limitato; (ii) che lo stesso insieme di operatori è R-limitato se $A$ è R-settoriale.
@article{BUMI_2008_9_1_1_a2,
     author = {Venni, Alberto},
     title = {A {Note} on {Sectorial} and {R-Sectorial} {Operators}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {79--85},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {1},
     year = {2008},
     zbl = {1164.47041},
     mrnumber = {2387998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a2/}
}
TY  - JOUR
AU  - Venni, Alberto
TI  - A Note on Sectorial and R-Sectorial Operators
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 79
EP  - 85
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a2/
LA  - en
ID  - BUMI_2008_9_1_1_a2
ER  - 
%0 Journal Article
%A Venni, Alberto
%T A Note on Sectorial and R-Sectorial Operators
%J Bollettino della Unione matematica italiana
%D 2008
%P 79-85
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a2/
%G en
%F BUMI_2008_9_1_1_a2
Venni, Alberto. A Note on Sectorial and R-Sectorial Operators. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 79-85. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a2/

[1] P. Clément - B. De Pagter - F.A. Sukochev - H. Witvliet, Schauder decompositions and multiplier theorems, Studia Math., 138 (2000), 135-163. | fulltext EuDML | MR | Zbl

[2] R. Denk - M. Hieber - J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166, no. 788 (2003). | DOI | MR

[3] A. Favini - Ya. Yakubov, Boundary value problems for second order elliptic differential-operator equations in UMD Banach spaces, preprint 2007. | MR | Zbl

[4] M. Haase, The Functional Calculus for Sectorial Operators, Operator Theory, Advances and Applications, 169, Birkhauser Verlag 2006. | DOI | MR | Zbl

[5] C. Martínez Carracedo - M. Sanz Alix, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, 187, Elsevier 2001. | MR | Zbl

[6] L. Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity, Math. Ann., 319 (2001), 735-758. | DOI | MR | Zbl