On the Qualitative Behavior of the Solutions to the 2-D Navier-Stokes Equation
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 265-274.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This talk, based on a research in collaboration with E. Caglioti and F.Rousset, deals with a modified version of the two-dimensional Navier-Stokes equation wich preserves energy and momentum of inertia. Such a new equation is motivated by the occurrence of different dissipation time scales. It is also related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics.
@article{BUMI_2008_9_1_1_a10,
     author = {Pulvirenti, M.},
     title = {On the {Qualitative} {Behavior} of the {Solutions} to the {2-D} {Navier-Stokes} {Equation}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {265--274},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {1},
     year = {2008},
     zbl = {1164.35067},
     mrnumber = {2424293},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a10/}
}
TY  - JOUR
AU  - Pulvirenti, M.
TI  - On the Qualitative Behavior of the Solutions to the 2-D Navier-Stokes Equation
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 265
EP  - 274
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a10/
LA  - en
ID  - BUMI_2008_9_1_1_a10
ER  - 
%0 Journal Article
%A Pulvirenti, M.
%T On the Qualitative Behavior of the Solutions to the 2-D Navier-Stokes Equation
%J Bollettino della Unione matematica italiana
%D 2008
%P 265-274
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a10/
%G en
%F BUMI_2008_9_1_1_a10
Pulvirenti, M. On the Qualitative Behavior of the Solutions to the 2-D Navier-Stokes Equation. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 1, pp. 265-274. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_1_a10/

[BDP] A. Blanchet - J. Dolbeault - B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differential Equations, No. 44 (electronic) (2006), 32. | fulltext EuDML | MR | Zbl

[CLMP1] E. Caglioti - P.-L. Lions - C. Marchioro - M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Comm. Math. Phys., 143, 3 (1992), 501-525. | MR | Zbl

[CLMP2] E. Caglioti - P.-L. Lions - C. Marchioro - M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. II. Comm. Math. Phys., 174, 2 (1995), 229-260. | MR | Zbl

[CPR 1] E. Caglioti - M. Pulvirenti - F. Rousset, Quasistationary states for the 2-D Navier-Stokes Equation. preprint (2007).

[CPR 2] E. Caglioti - M. Pulvirenti - F. Rousset, 2-D constrained Navier-Stokes Equation and intermediate asymptotic. preprint (2007). | DOI | MR | Zbl

[GL] D. Gogny - P. L. Lions, Sur les états d'èquilibre pour les densitès électroniques dans les plasmas. RAIRO Modèl Math. Anal. Num., 23, no. 1 (1989), 137-153. | fulltext EuDML | DOI | MR | Zbl

[JL] W. Jager - S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc., 329, no. 2 (1992), 819-824. | DOI | MR | Zbl

[K] M. K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions. Comm. Pure Appl. Math., 46, no. 1 (1993), 27-56. | DOI | MR | Zbl

[KL] M. K.-H. Kiessling - J. L. Lebowitz, The micro-canonical point vortex ensemble: beyond equivalence. Lett. Math. Phys., 42, no. 1 (1997), 43-58. | DOI | MR | Zbl

[LP] T. S. Lungren - Y. B. Pointin, Statistical mechanics of two-dimensional vortices in a bounded container. Phys. Fluids, 19 (1976), 1459-1470. | Zbl

[MP] C. Marchioro - M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids. Appl Math series, n. 96 Springer (1991). | DOI | MR | Zbl

[MJ] D. Montgomery - G. Joyce, Statistical mechanics of "negative temperature" states. Phys. Fluids, 17 (1974), 1139-1145. | DOI | MR

[O] L. Onsager, Statistical hydrodynamics. Nuovo Cimento (9) 6, Supplemento, 2 (Convegno Internazionale di Meccanica Statistica) (1949), 279-287. | MR