Finite Simple Groups Admitting Minimally Irreducible Characters of Prime Power Degree
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 613-621.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we classify the finite simple groups that admit an irreducible complex character of prime power degree which is reducible over any proper sub-group.
In questo lavoro si classificano i gruppi semplici finiti che ammettono un carattere complesso irriducibile avente grado la potenza di un primo e la cui restrizione ad ogni sottogruppo proprio è riducibile.
@article{BUMI_2007_8_10B_3_a9,
     author = {Pellegrini, Marco Antonio},
     title = {Finite {Simple} {Groups} {Admitting} {Minimally} {Irreducible} {Characters} of {Prime} {Power} {Degree}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {613--621},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1167.20306},
     mrnumber = {2351533},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a9/}
}
TY  - JOUR
AU  - Pellegrini, Marco Antonio
TI  - Finite Simple Groups Admitting Minimally Irreducible Characters of Prime Power Degree
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 613
EP  - 621
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a9/
LA  - en
ID  - BUMI_2007_8_10B_3_a9
ER  - 
%0 Journal Article
%A Pellegrini, Marco Antonio
%T Finite Simple Groups Admitting Minimally Irreducible Characters of Prime Power Degree
%J Bollettino della Unione matematica italiana
%D 2007
%P 613-621
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a9/
%G en
%F BUMI_2007_8_10B_3_a9
Pellegrini, Marco Antonio. Finite Simple Groups Admitting Minimally Irreducible Characters of Prime Power Degree. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 613-621. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a9/

[1] A. Balog - C. Bessenrodt - J. B. Olsson - K. Ono, Prime power degree representations of the symmetric and alternating groups, J. London Math. Soc. (2) 64, no. 2, (2001), 344-356. | DOI | MR | Zbl

[2] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters. A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1985. | MR | Zbl

[3] J. H. Conway - R. T. Curtis - S. P. Norton - R. A. Parker - R. A. Wilson, Atlas of finite groups. Oxford University Press, 1985. | MR | Zbl

[4] C. W. Curtis - I. Reiner, Methods of representation theory. Vol. II. With applications to finite groups and orders, A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1987. | MR | Zbl

[5] F. Dalla Volta - L. Di Martino, Minimally irreducible groups of prime degree, Bull. Austral. Math. Soc., 62, no. 2 (2000), 335-345. | DOI | MR | Zbl

[6] F. Dalla Volta - L. Di Martino - A. Previtali, On minimally irreducible groups of degree the product of two primes, J. Group Theory, 6, no. 1 (2003), 11-56. | DOI | MR | Zbl

[7] L. Dornhoff, Group representation theory. Part A: Ordinary representation theory, Marcel Dekker, Inc., New York, 1971. | MR | Zbl

[8] P. Gérardin, Weil representations associated to finite fields, J. Algebra, 46, (1) (1977), 54-101. | DOI | MR

[9] R. E. Howe, On the character of Weil's representation, Trans. Amer. Math. Soc., 177, (1973), 287-298. | DOI | MR | Zbl

[10] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York 1967. | MR

[11] P. Kleidman - M. Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge, 1990. | DOI | MR | Zbl

[12] G. Malle - J. Saxl - T. Weigel, Generation of classical groups, Geom. Dedicata, 49, no. 1 (1994), 85-116.. | DOI | MR | Zbl

[13] G. Malle - A. E. Zalesskii!, Prime power degree representations of quasi-simple groups, Arch. Math. (Basel) 77, no. 6 (2001), 461-468. | DOI | MR | Zbl

[14] M. A. Pellegrini, A generalized Cameron-Kantor Theorem, J. Algebra, 304, no. 1 (2006), 397-418. | DOI | MR

[15] G. M. Seitz, Flag-transitive subgroups of Chevalley groups, Ann. of Math. (2) 97 (1973), 27-56. | DOI | MR | Zbl

[16] G. M. Seitz, Some representations of classical groups, J. London Math. Soc. (2) 10 (1975), 115-120. | DOI | MR | Zbl

[17] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. für Math. u. Phys., 3 (1892), 265-284. | DOI | MR