A Constructive Boolean Central Limit Theorem
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 593-604.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We give a construction of the creation, annihilation and number processes on the Boolean Fock space by means of a quantum central limit theorem starting from creation, annihilation and number processes with discrete time.
Si fornisce una costruzione dei processi di creazione, distruzione e numero sullo spazio di Fock Booleano a mezzo di un teorema di limite centrale quantistico partendo da processi di creazione, distruzione e numero con tempo discreto.
@article{BUMI_2007_8_10B_3_a7,
     author = {Ben Ghorbal, Anis and Crismale, Vitonofrio and Lu, Yun Gang},
     title = {A {Constructive} {Boolean} {Central} {Limit} {Theorem}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {593--604},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1139.60009},
     mrnumber = {2351531},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a7/}
}
TY  - JOUR
AU  - Ben Ghorbal, Anis
AU  - Crismale, Vitonofrio
AU  - Lu, Yun Gang
TI  - A Constructive Boolean Central Limit Theorem
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 593
EP  - 604
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a7/
LA  - en
ID  - BUMI_2007_8_10B_3_a7
ER  - 
%0 Journal Article
%A Ben Ghorbal, Anis
%A Crismale, Vitonofrio
%A Lu, Yun Gang
%T A Constructive Boolean Central Limit Theorem
%J Bollettino della Unione matematica italiana
%D 2007
%P 593-604
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a7/
%G en
%F BUMI_2007_8_10B_3_a7
Ben Ghorbal, Anis; Crismale, Vitonofrio; Lu, Yun Gang. A Constructive Boolean Central Limit Theorem. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 593-604. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a7/

[1] L. Accardi - A. Bach, The harmonic oscillator as quantum central limit theorem for monotone noise, preprint (1985). | Zbl

[2] L. Accardi - A. Ben Ghorbal - V. Crismale - Y. G. Lu, Projective independence and quantum central limit theorem, preprint (2007). | MR

[3] L. Accardi - V. Crismale - Y. G. Lu, Constructive universal central limit theorems based on interacting Fock spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8, no. 4 (2005), 631-650. | DOI | MR | Zbl

[4] L. Accardi - Y. Hashimoto - N. Obata, Notions of independence related to the free group, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1, no. 2 (1998), 201-220. | DOI | MR | Zbl

[5] A. Ben Ghorbal - M. Schürmann, Noncommutative notions of stochastic independence, Math. Proc. Cambridge Philos. Soc., 133, no. 3 (2002), 531-561. | DOI | MR | Zbl

[6] A. Ben Ghorbal - M. Schürmann, Quantum stochastic calculus on Boolean Fock Space, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7, no. 4 (2004), 631-650. | DOI | MR | Zbl

[7] M. Bozejko, Uniformly bounded representations of free groups, J. Reine Angew. Math., 377 (1987), 170-186. | fulltext EuDML | DOI | MR | Zbl

[8] M. De Giosa - Y. G. Lu, The free creation and annihilation operators as the central limit of the quantum Bernoulli process, Random Oper. Stoch. Eq. 5, no. 3 (1997), 227- 236. | DOI | MR | Zbl

[9] R. Lenczewski, Stochastic calculus on multiple symmetric Fock spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4, no. 2 (2001), 309-346. | DOI | MR | Zbl

[10] V. Liebsher, On a central limit theorem for monotone noise, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2, no. 2 (1999), 155-167. | DOI | MR

[11] Y. G. Lu, The Boson and Fermion quantum Brownian motions as quantum central limits of the quantum Bernoulli processes, Boll. Un. Mat. Ital. B (7) 6, no. 2 (1992), 245-273. | MR | Zbl

[12] P. A. Meyer, "Quantum probability for probabilists", Lecture Notes in Mathematics 1538, Springer-Verlag, Berlin, 1993. | DOI | MR | Zbl

[13] N. Muraki, The five independencies as natural products, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6, no. 3 (2003), 337-371. | DOI | MR | Zbl

[14] M. Skeide, Quantum stochastic calculus on full Fock modules, J. Funct. Anal., 173, no. 2 (2000), 401-452. | DOI | MR | Zbl

[15] R. Speicher, On universal product, Fields Inst. Commun., 12 (1997), 257-266. | MR | Zbl

[16] R. Speicher - W. Von Waldenfels, A general central limit theorem and invariance principle, in Quantum Probability and Related Topics, Editor L. Accardi, World Scientific Vol., 9 (1994), 371-387.

[17] R. Speicher - R. Woroudi, Boolean convolution, Fields Inst. Commun., 12 (1997), 267-279. | MR

[18] W. Von Waldenfels, An approach to the theory of pressure broadening of spectral lines, In: "Probability and Information Theory II", M. Behara - K. Krickeberg - J. Wolfowitz (eds.), Lect. Notes Math., 296 (1973), 19-64. | MR