Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2007_8_10B_3_a7, author = {Ben Ghorbal, Anis and Crismale, Vitonofrio and Lu, Yun Gang}, title = {A {Constructive} {Boolean} {Central} {Limit} {Theorem}}, journal = {Bollettino della Unione matematica italiana}, pages = {593--604}, publisher = {mathdoc}, volume = {Ser. 8, 10B}, number = {3}, year = {2007}, zbl = {1139.60009}, mrnumber = {2351531}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a7/} }
TY - JOUR AU - Ben Ghorbal, Anis AU - Crismale, Vitonofrio AU - Lu, Yun Gang TI - A Constructive Boolean Central Limit Theorem JO - Bollettino della Unione matematica italiana PY - 2007 SP - 593 EP - 604 VL - 10B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a7/ LA - en ID - BUMI_2007_8_10B_3_a7 ER -
%0 Journal Article %A Ben Ghorbal, Anis %A Crismale, Vitonofrio %A Lu, Yun Gang %T A Constructive Boolean Central Limit Theorem %J Bollettino della Unione matematica italiana %D 2007 %P 593-604 %V 10B %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a7/ %G en %F BUMI_2007_8_10B_3_a7
Ben Ghorbal, Anis; Crismale, Vitonofrio; Lu, Yun Gang. A Constructive Boolean Central Limit Theorem. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 593-604. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a7/
[1] The harmonic oscillator as quantum central limit theorem for monotone noise, preprint (1985). | Zbl
- ,[2] Projective independence and quantum central limit theorem, preprint (2007). | MR
- - - ,[3] Constructive universal central limit theorems based on interacting Fock spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8, no. 4 (2005), 631-650. | DOI | MR | Zbl
- - ,[4] Notions of independence related to the free group, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1, no. 2 (1998), 201-220. | DOI | MR | Zbl
- - ,[5] Noncommutative notions of stochastic independence, Math. Proc. Cambridge Philos. Soc., 133, no. 3 (2002), 531-561. | DOI | MR | Zbl
- ,[6] Quantum stochastic calculus on Boolean Fock Space, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7, no. 4 (2004), 631-650. | DOI | MR | Zbl
- ,[7] Uniformly bounded representations of free groups, J. Reine Angew. Math., 377 (1987), 170-186. | fulltext EuDML | DOI | MR | Zbl
,[8] The free creation and annihilation operators as the central limit of the quantum Bernoulli process, Random Oper. Stoch. Eq. 5, no. 3 (1997), 227- 236. | DOI | MR | Zbl
- ,[9] Stochastic calculus on multiple symmetric Fock spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4, no. 2 (2001), 309-346. | DOI | MR | Zbl
,[10] On a central limit theorem for monotone noise, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2, no. 2 (1999), 155-167. | DOI | MR
,[11] The Boson and Fermion quantum Brownian motions as quantum central limits of the quantum Bernoulli processes, Boll. Un. Mat. Ital. B (7) 6, no. 2 (1992), 245-273. | MR | Zbl
,[12] Quantum probability for probabilists", Lecture Notes in Mathematics 1538, Springer-Verlag, Berlin, 1993. | DOI | MR | Zbl
, "[13] The five independencies as natural products, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6, no. 3 (2003), 337-371. | DOI | MR | Zbl
,[14] Quantum stochastic calculus on full Fock modules, J. Funct. Anal., 173, no. 2 (2000), 401-452. | DOI | MR | Zbl
,[15] On universal product, Fields Inst. Commun., 12 (1997), 257-266. | MR | Zbl
,[16] A general central limit theorem and invariance principle, in Quantum Probability and Related Topics, Editor L. Accardi, World Scientific Vol., 9 (1994), 371-387.
- ,[17] Boolean convolution, Fields Inst. Commun., 12 (1997), 267-279. | MR
- ,[18] An approach to the theory of pressure broadening of spectral lines, In: "Probability and Information Theory II", M. Behara - K. Krickeberg - J. Wolfowitz (eds.), Lect. Notes Math., 296 (1973), 19-64. | MR
,