Threefolds with Kodaira Dimension 0 or 3
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 1149-1182
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
Using the theory of adjoints and pluricanonical adjoints, we construct three nonsingular threefolds, as desingularizations of degree six hypersurfaces in $\mathbb{P}^4$, having the irregularities $q_1=q_2= 0$ and the following periodical sequences of plurigenera respectively \begin{equation*}(p_g,P_2, P_3, \ldots, P_m, \ldots) = (0, 0, 1, 0, 0, 1,\ldots),(0, 0, 0, 1, 0, 0, 0, 1, \ldots), (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, \ldots).\end{equation*}In the Appendix, starting from the second above-mentioned example, we construct a threefold of general type with $qq_1 = q_2 = 0, p_g =1$, $P_2=2$ whose m-canonical transformation is birational if and only if $m \geq 11$.
@article{BUMI_2007_8_10B_3_a46,
author = {Stagnaro, Ezio},
title = {Threefolds with {Kodaira} {Dimension} 0 or 3},
journal = {Bollettino della Unione matematica italiana},
pages = {1149--1182},
year = {2007},
volume = {Ser. 8, 10B},
number = {3},
zbl = {1193.14052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a46/}
}
Stagnaro, Ezio. Threefolds with Kodaira Dimension 0 or 3. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 1149-1182. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a46/