Threefolds with Kodaira Dimension 0 or 3
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 1149-1182
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Using the theory of adjoints and pluricanonical adjoints, we construct three nonsingular threefolds, as desingularizations of degree six hypersurfaces in $\mathbb{P}^4$, having the irregularities $q_1=q_2= 0$ and the following periodical sequences of plurigenera respectively \begin{equation*}(p_g,P_2, P_3, \ldots, P_m, \ldots) = (0, 0, 1, 0, 0, 1,\ldots),(0, 0, 0, 1, 0, 0, 0, 1, \ldots), (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, \ldots).\end{equation*}In the Appendix, starting from the second above-mentioned example, we construct a threefold of general type with $qq_1 = q_2 = 0, p_g =1$, $P_2=2$ whose m-canonical transformation is birational if and only if $m \geq 11$.
@article{BUMI_2007_8_10B_3_a46,
author = {Stagnaro, Ezio},
title = {Threefolds with {Kodaira} {Dimension} 0 or 3},
journal = {Bollettino della Unione matematica italiana},
pages = {1149--1182},
publisher = {mathdoc},
volume = {Ser. 8, 10B},
number = {3},
year = {2007},
zbl = {1193.14052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a46/}
}
Stagnaro, Ezio. Threefolds with Kodaira Dimension 0 or 3. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 1149-1182. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a46/