A Note on Calculation of Asymptotic Energy for a Functional of Ginzburg-Landau Type with Externally Imposed Lower-Order Oscillatory Term in One Dimension
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 1125-1142.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this note we consider the Ginzburg-Landau functional \begin{equation*}I^\epsilon_a(v) = \int_0^1(\epsilon^2 v''^2(s) + W(v'(s)) + a(\epsilon^{-\beta}s(v^2(s)) \, ds\end{equation*} where $\beta > 0$ and a is 1-periodic. We determine how (rescaled) minimal asymptotic energy associated to $I^\epsilon_a$ depends on parameter $\beta > 0$ as $\epsilon \o 0$. In particular, our analysis shows that minimizers of $I_{a}^{\epsilon}$ are nearly $\epsilon^{1/3}$-periodic.
In questa nota consideriamo il funzionale di Ginzburg-Landau \begin{equation*}I^\epsilon_a(v) = \int_0^1 (\epsilon^2 v''^2(s) + W(v'(s)) + a(\epsilon^{-\beta}s(v^2(s)) \, ds\end{equation*} ove $\beta > 0$ e $a$ è 1-periodica. Mostreremo come la minima energia asintotica (ridimensionata) associata a $I^\epsilon_a$ dipenda dal parametro $\beta > 0$ per $\epsilon \to 0$. In particolare, la nostra analisi mostra che i minimizzatori di $I^\epsilon_a$ sono quasi $\epsilon^{1/3}$-periodici.
@article{BUMI_2007_8_10B_3_a44,
     author = {Ragu\v{z}, Andrija},
     title = {A {Note} on {Calculation} of {Asymptotic} {Energy} for a {Functional} of {Ginzburg-Landau} {Type} with {Externally} {Imposed} {Lower-Order} {Oscillatory} {Term} in {One} {Dimension}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {1125--1142},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1189.49019},
     mrnumber = {1823420},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a44/}
}
TY  - JOUR
AU  - Raguž, Andrija
TI  - A Note on Calculation of Asymptotic Energy for a Functional of Ginzburg-Landau Type with Externally Imposed Lower-Order Oscillatory Term in One Dimension
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 1125
EP  - 1142
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a44/
LA  - en
ID  - BUMI_2007_8_10B_3_a44
ER  - 
%0 Journal Article
%A Raguž, Andrija
%T A Note on Calculation of Asymptotic Energy for a Functional of Ginzburg-Landau Type with Externally Imposed Lower-Order Oscillatory Term in One Dimension
%J Bollettino della Unione matematica italiana
%D 2007
%P 1125-1142
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a44/
%G en
%F BUMI_2007_8_10B_3_a44
Raguž, Andrija. A Note on Calculation of Asymptotic Energy for a Functional of Ginzburg-Landau Type with Externally Imposed Lower-Order Oscillatory Term in One Dimension. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 1125-1142. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a44/

[1] G. Alberti - S. Müller, A new approach to variational problems with multiple scales, Comm. Pure Appl. Math., 54 (2001), 761-825. | DOI | MR | Zbl

[2] J. M. Ball, A version of the fundamental theorem for Young measures, in PDE's and Continuum Models of Phase Transitions (M. Rascle and al., eds.), Lecture Notes in Physics, 344, Springer, Berlin 1989. | DOI | MR

[3] R. Choksi, Scaling laws in microphase separation of diblock copolymers, J. Nonlinear Sci., 11 (2001), 223-236. | DOI | MR | Zbl

[4] G. Dalmaso, An Introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations, Birkhauser, Boston 1993. | DOI | MR

[5] R. V. Kohn - S. Müller, Branching of twins near an austensite-twinned-martensite interface, Philosophical Magazine A, 66 (1992), 697-715.

[6] L. Modica - S. Mortola, Un esempio di $\Gamma$-convergenca, Boll. Un. Mat. Ital. (5), 14-B (1977), 285-299. | MR

[7] S. Müller, Singular perturbations as a selection criterion for minimizing sequences, Calc. Var., 1 (1993), 169-204. | DOI | MR

[8] T. Ohta - K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621-2632.

[9] A. Raguz, Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micropatterns, Asymptotic Anal., 41 (3,4) (2005), 331-361. | MR | Zbl

[10] L. C. Young, Lectures on the calculus of variations and optimal control theory, Chelsea, 1980. | MR