On the Existence of Solutions for Abstract Nonlinear Operator Equations
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 1089-1100.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We provide a duality theory and existence results for a operator equation $\nabla T(x) = \nabla N(x)$ where $T$ is not necessarily a monotone operator. We use the abstract version of the so called dual variational method. The solution is obtained as a limit of a minimizng sequence whose existence and convergence is proved.
Forniamo una teoria duale e risultati di esistenza per un'equazione operatore $\nabla T(x) = \nabla N(x)$ dove $T$ non è necessariamente un operatore monotono. Usiamo la versione astratta del cosiddetto metodo variazionale duale. La soluzione è ottenuta come un limite di una sequenza minimizzante la cui esistenza e convergenza è provata.
@article{BUMI_2007_8_10B_3_a42,
     author = {Galewski, Marek},
     title = {On the {Existence} of {Solutions} for {Abstract} {Nonlinear} {Operator} {Equations}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {1089--1100},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1236.47063},
     mrnumber = {1851857},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a42/}
}
TY  - JOUR
AU  - Galewski, Marek
TI  - On the Existence of Solutions for Abstract Nonlinear Operator Equations
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 1089
EP  - 1100
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a42/
LA  - en
ID  - BUMI_2007_8_10B_3_a42
ER  - 
%0 Journal Article
%A Galewski, Marek
%T On the Existence of Solutions for Abstract Nonlinear Operator Equations
%J Bollettino della Unione matematica italiana
%D 2007
%P 1089-1100
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a42/
%G en
%F BUMI_2007_8_10B_3_a42
Galewski, Marek. On the Existence of Solutions for Abstract Nonlinear Operator Equations. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 1089-1100. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a42/

[1] G. Dinca - P. Jebelean, Some existence results for a class of nonlinear equations involving a duality mapping, Nonlinear Analysis, 46 (2001), 347-363. | DOI | MR | Zbl

[2] I. Ekeland - R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. | MR | Zbl

[3] D. G. De Figuereido, Lectures on Ekeland variational principle with applications and detours, Tata Institute of Fundamental Research, Springer, Berlin, 1989. | MR

[4] H. Gajewski - K. Groeger - K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974. | MR

[5] M. Galewski, The existence of solutions for a semilinear abstract Dirichlet problem, Georgian Math. J., 11 (2004), no. 2, 243-254. | MR | Zbl

[6] T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, 1980. | MR | Zbl

[7] J. Mawhin, Problems de Dirichlet variationnels non lineaires, Les Presses de l'Universite de Montreal, 1987. | MR

[8] J. Mawhin - M. Willem, Critical Point Theory, Springer-Verlag, New York, 1989. | Zbl

[9] A. Nowakowski, A New Variational Principle and Duality for Periodic Solutions of Hamilton's Equations, J. Differential Equations, vol. 97, No. 1 (1992), 174-188. | DOI | MR | Zbl

[10] A. Nowakowski - A. Rogowski, On the new variational principles and duality for periodic solutions of Lagrange equations with superlinear nonlinearities, J. Math. Analysis App., 264 (2001), 168-181. | DOI | MR | Zbl

[11] D. R. Smart, Fixed Point Theorems, Cambridge University Press, 1974. | MR | Zbl