PHH Harmonic Submersions are Stable
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 1081-1088.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove that PHH harmonic submersions are (weakly) stable.
Si prova che le applicazioni armoniche di tipo PHH sono (debolmente) stabili.
@article{BUMI_2007_8_10B_3_a41,
     author = {Aprodu, Monica Alice},
     title = {PHH {Harmonic} {Submersions} are {Stable}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {1081--1088},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1188.53073},
     mrnumber = {1809307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a41/}
}
TY  - JOUR
AU  - Aprodu, Monica Alice
TI  - PHH Harmonic Submersions are Stable
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 1081
EP  - 1088
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a41/
LA  - en
ID  - BUMI_2007_8_10B_3_a41
ER  - 
%0 Journal Article
%A Aprodu, Monica Alice
%T PHH Harmonic Submersions are Stable
%J Bollettino della Unione matematica italiana
%D 2007
%P 1081-1088
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a41/
%G en
%F BUMI_2007_8_10B_3_a41
Aprodu, Monica Alice. PHH Harmonic Submersions are Stable. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 1081-1088. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a41/

[AAB00] M. A. Aprodu - M. Aprodu - V. Brinzanescu, A class of harmonic maps and minimal submanifolds. Int. J. Math., 11 (2000), 1177-1191. | DOI | MR | Zbl

[AA99] M. A. Aprodu - M. Aprodu, Implicitly defined harmonic PHH submersions. Manuscripta Math., 100 (1999), 103-121. | DOI | MR | Zbl

[BW03] P. Baird - J. C. Wood, Harmonic Morphisms Between Riemannian Manifolds. Oxford Univ. Press 2003. | DOI | MR | Zbl

[BBdBR89] D. Burns - F. Burstall - P. De Bartolomeis - J. Rawnsley, Stability of harmonic maps of Ka Èhler manifolds. J. Differential Geom., 30 (1989), 579-594. | MR | Zbl

[Li70] A. Lichnerowicz, Applications harmoniques et veriétés kählériennes. Symp. Math. III (Bologna 1970), 341-402. | MR

[Lou97] E. Loubeau, Pseudo Harmonic Morphisms. Int. J. Math., 7 (1997), 943-957. | DOI | MR | Zbl

[Mo98] S. Montaldo, Stability of harmonic morphisms to a surface, Int. J. Math., 9 (1998), 865-875. | DOI | MR | Zbl

[Urk93] K. Urakawa, Calculus of variations and harmonic maps. Transl. Math. Monographs Vol. 132. AMS Providence, Rhode Island: 1993. | MR | Zbl