Degenerate Elliptic Equations and Morrey Spaces
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 989-1011.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we study local regularity for the generalized solution to the Dirichlet problem related to the equation \begin{equation*} Lu \equiv X^*_i (a_{ij}X_ju)=f. \end{equation*} where $X_{1}, X_2, \ldots, X_m$ are vector fields satisfying Hörmander condition and $a_{ij}\in L^\infty$. We give a representation formula for the generalized solution in terms of the Green function and thanks to suitable estimates we achieve our goal. In the case $f \geq 0$ we are able to give necessary condition too.
In questo articolo viene studiata la regolarità locale per la soluzione generalizzata del problema di Dirichlet relativo all'equazione \begin{equation*} Lu \equiv X^*_i (a_{ij}X_ju)=f.\end{equation*} dove $X_1, X_2, \ldots, X_m$ sono campi vettoriali soddisfacenti la condizione di Hörmander e $a_{ij} \in L^{\infty}$. Viene data una formula di rappresentazione per la soluzione generalizzata in termini di funzione di Green. I risultati sono ottenuti grazie a opportune stime di quest'ultima. Nel caso in cui $f \geq 0$ i teoremi provati sono invertibili.
@article{BUMI_2007_8_10B_3_a36,
     author = {Borrello, Francesco},
     title = {Degenerate {Elliptic} {Equations} and {Morrey} {Spaces}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {989--1011},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1184.35143},
     mrnumber = {2507910},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a36/}
}
TY  - JOUR
AU  - Borrello, Francesco
TI  - Degenerate Elliptic Equations and Morrey Spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 989
EP  - 1011
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a36/
LA  - en
ID  - BUMI_2007_8_10B_3_a36
ER  - 
%0 Journal Article
%A Borrello, Francesco
%T Degenerate Elliptic Equations and Morrey Spaces
%J Bollettino della Unione matematica italiana
%D 2007
%P 989-1011
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a36/
%G en
%F BUMI_2007_8_10B_3_a36
Borrello, Francesco. Degenerate Elliptic Equations and Morrey Spaces. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 989-1011. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a36/

[1] A. Baldi, A non-existence problem for degenerate elliptic PDE's, Comm. Partial Differential Equations, Communications in Partial Differential Equations, 25, 7-8 (2000), 1371-1398. | DOI | MR

[2] C. Cancelier - C-J. Xu, Remarques sur les fonctions de Green associées aux opérateurs de Hörmander, C. R. Acad. Sci. Paris Sér. I Math., 330, 6 (2000), 433-436. | DOI | MR | Zbl

[3] L. Capogna - D. Danielli - N. Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations, 18, 9-10 (1993), 1765-1794. | DOI | MR | Zbl

[4] Y. Chen, Regularity of solutions to the Dirichlet problem for degenerate elliptic equation, Chinese Ann. Math. Ser. B, 24, 4 (2003), 529-540. | DOI | MR | Zbl

[5] W.-L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1939), 98-105. | fulltext EuDML | DOI | MR | Zbl

[6] G. Citti - N. Garofalo - E. Lanconelli, Harnack's inequality for sum of squares of vector fields plus a potential, Amer. J. Math., 115, 3 (1993), 699-734. | DOI | MR | Zbl

[7] D. Danielli, A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential Analysis, 11 (1999), 387-413. | DOI | MR | Zbl

[8] G. Di Fazio, Poisson equations and Morrey spaces, J. Math. Anal. Appl., 163, 1 (1992), 157-167. | DOI | MR | Zbl

[9] G. Di Fazio, Dirichlet problem characterization of regularity, Manuscripta Math., 84, 1 (1994), 47-56. | fulltext EuDML | DOI | MR | Zbl

[10] G. Di Fazio - P. Zamboni, Hölder continuity for quasilinear subelliptic equations in Carnot Carathéodory spaces, Math. Nachr., 272 (2004), 3-10. | DOI | MR | Zbl

[11] B. Franchi - E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10, 4 (1983), 523-541. | fulltext EuDML | MR | Zbl

[12] B. Franchi - R. Serapioni - F. Serra Cassano, Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B (7), 11, 1 (1997), 83-117. | MR | Zbl

[13] B. Franchi - R. L. Wheeden, Compensation couples and isoperimetric estimates for vector fields, Colloq. Math., 74, 1 (1997), 9-27. | fulltext EuDML | DOI | MR | Zbl

[14] M. Grüter - K.-O. Widman, The Green function for uniformly elliptic equations, Manuscripta Math., 37, 3 (1982), 303-342. | fulltext EuDML | DOI | MR | Zbl

[15] J. J. Kohn - L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math., 18 (1965), 443-492. | DOI | MR | Zbl

[16] W. Littman - G. Stampacchia - H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 43-77. | fulltext EuDML | MR | Zbl

[17] G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana, 8, 3 (1992), 367-439. | fulltext EuDML | DOI | MR | Zbl

[18] A. Nagel - E. M. Stein - S. Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155, 1-2 (1985), 103-147. | DOI | MR | Zbl

[19] A. Sánchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math., 78, 1 (1984), 143-160. | fulltext EuDML | DOI | MR

[20] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15, 1 (1965), 189-258. | fulltext EuDML | MR | Zbl