Hardy-Sobolev Inequalities for Hessian Integrals
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 951-967.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Using appropriate symmetrization arguments, we prove the Hardy-Sobolev type inequalities for Hessian Integrals which extend the classical results, well known for Sobolev functions. For such inequalities the value of the best constant is given. Finally we give an improvement of these inequalities by adding a second term that, involves another singular weight which is a suitable negative power of $\log (|x|)$.
Usando appropriate tecniche di simmetrizzazione, si provano disuguaglianze di tipo Hardy-Sobolev per integrali Hessiani che estendono quelle classiche, ben note per le funzioni di Sobolev. Per tali disuguaglianze viene dato il valore della costante ottimale. Infine si stabilisce un miglioramento delle suddette disuguaglianze con l'aggiunta di un secondo termine che presenta un peso singolare dato da un'opportuna potenza negativa della funzione $\log (|x|)$.
@article{BUMI_2007_8_10B_3_a34,
     author = {Gavitone, Nunzia},
     title = {Hardy-Sobolev {Inequalities} for {Hessian} {Integrals}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {951--967},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1184.35010},
     mrnumber = {2507908},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a34/}
}
TY  - JOUR
AU  - Gavitone, Nunzia
TI  - Hardy-Sobolev Inequalities for Hessian Integrals
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 951
EP  - 967
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a34/
LA  - en
ID  - BUMI_2007_8_10B_3_a34
ER  - 
%0 Journal Article
%A Gavitone, Nunzia
%T Hardy-Sobolev Inequalities for Hessian Integrals
%J Bollettino della Unione matematica italiana
%D 2007
%P 951-967
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a34/
%G en
%F BUMI_2007_8_10B_3_a34
Gavitone, Nunzia. Hardy-Sobolev Inequalities for Hessian Integrals. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 951-967. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a34/

[1] C. Bandle, Isoperimetric Inequalities and Applications Pitman, 1980. | MR | Zbl

[2] C. Bennett - R. Sharpley, Interpolation of Operators, Academic Press, 1988. | MR | Zbl

[3] G.A. Bliss, An integral inequality, J. London Math. Soc., 5 (1930), 40-46. | DOI | MR | Zbl

[4] H. Brezis - J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Revista Mat. Univ. Complutense Madrid, 10 (1997), 443-469. | fulltext EuDML | MR

[5] Yu. D. Burago - V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, 1988. | DOI | MR

[6] N. Chaudhuri - Adimurthi - M. Ramaswamy, An improved Hardy-Sobolev inequality and its applications, Proc. Am. Math. Soc., 130, (2001), 489-505. | DOI | MR | Zbl

[7] K. S. Chou - D. Geng, Critical dimension of a Hessian Equation Involving Critical Exponent and a Related Asymptotic Result, J. Differential Equations, 129 (1996), 79-110. | DOI | MR | Zbl

[8] H. Egnell, Elliptic Boundary Value Problems with Singular Coefficients and Critical Nonlinearities, Indiana Univ. Math. J., 38 (1989), 235-251. | DOI | MR | Zbl

[9] J. Garcia Azorero - I. Peral Alonso, Hardy inequalities and some critical elliptic parabolic problems, J. Diff. Eq., 144 (1998), 441-476. | DOI | MR | Zbl

[10] D. Gilbarg - N. S. Trudinger, Elliptic partial differential equation of second order, (Second Edition), Springer-Verlag, 1983. | DOI | MR | Zbl

[11] V. G. Maz'Ja - Sobolev Spaces, Springer-Verlag, 1985. | DOI | MR

[12] B. Opic - A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Group UK Limited, London, 1990. | MR | Zbl

[13] R. C. Reilly, On the Hessian of a function and the curvatures of its graph, Michigan Math. J., 20 (1974), 373-383. | MR

[14] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372. | DOI | MR | Zbl

[15] N. S. Trudinger, On new isoperimetric inequalities and symmetrization, J. Reine Angew. Math., 488 (1997), 203-220. | fulltext EuDML | DOI | MR | Zbl

[16] N. S. Trudinger, Isoperimetric inequalities for quermassintegrals, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 11 (1994), 411-425. | fulltext EuDML | DOI | MR | Zbl

[17] K. Tso, Remarks on critical exponents for Hessian operators, Ann. Inst. H. Poincaré 7 (1990), 113-122. | fulltext EuDML | DOI | MR | Zbl

[18] K. Tso, On symmetrization and Hessian Equations, J. Anal. Math., 52 (1989), 94-106. | DOI | MR | Zbl

[19] J. L. Vàzquez - E. Zuazua, The Hardy Inequality and the Asymptotic Behaviour of the Heat Equation with an Inverse-Square Potential, J. Func. Anal., 173 (2000), 103-153. | DOI | MR | Zbl

[20] X. J. Wang, A class of fully nonlinear elliptic equations and related functionals, Indiana Univ. Math. J., 43 (1994), 25-54. | DOI | MR | Zbl