Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2007_8_10B_3_a33, author = {Montaldo, Stefano and Onnis, Irene I.}, title = {A {Note} on {Surfaces} in $\mathbb{H}^2 \times \mathbb{R}$}, journal = {Bollettino della Unione matematica italiana}, pages = {939--950}, publisher = {mathdoc}, volume = {Ser. 8, 10B}, number = {3}, year = {2007}, zbl = {1183.53055}, mrnumber = {2507907}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a33/} }
TY - JOUR AU - Montaldo, Stefano AU - Onnis, Irene I. TI - A Note on Surfaces in $\mathbb{H}^2 \times \mathbb{R}$ JO - Bollettino della Unione matematica italiana PY - 2007 SP - 939 EP - 950 VL - 10B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a33/ LA - en ID - BUMI_2007_8_10B_3_a33 ER -
Montaldo, Stefano; Onnis, Irene I. A Note on Surfaces in $\mathbb{H}^2 \times \mathbb{R}$. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 939-950. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a33/
[1] A Hopf differential for constant mean curvature surfaces in $\mathbb{S}^2 \times \mathbb{R}$ and $\mathbb{H}^2 \times \mathbb{R}$, Acta Math., 193 (2004), 141-174. | DOI | MR
- ,[2] 2)-invariant minimal and constant mean curvature surfaces in 3-dimensional homogeneous spaces, Manuscripta Math., 87 (1995), 1-12. | fulltext EuDML | DOI | MR | Zbl
- - , SO([3] Submanifolds and isometric immersions, Mathematics Lecture Series, 13. Publish or Perish, Houston, 1990. | MR
,[4] Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. | DOI | MR | Zbl
- ,[5] Harmonic maps and constant mean curvature surfaces in $\mathbb{H}^2 \times \mathbb{R}$, arXiv:math.DG/0507386. | DOI | MR
- ,[6] Invariant CMC surfaces in $\mathbb{H}^2 \times \mathbb{R}$, Glasg. Math. J., 46 (2004), 311-321. | DOI | MR | Zbl
- ,[7] Invariant surfaces in $\mathbb{H}^2 \times \mathbb{R}$ with constant (Gauss or mean) curvature, Publ. de la RSME, 9 (2005), 91-103.
- ,[8] The theory of minimal surfaces in $M \times \mathbb{R}$, Comment. Math. Helv., 80 (2005), 811-858. | DOI | MR | Zbl
- ,[9] Minimal surfaces in $\mathbb{H}^2 \times R$, Bull Braz. Math. Soc., 33 (2002), 263-292. | DOI | MR
- ,[10] Global properties of constant mean curvature surfaces in $\mathbb{H}^2 \times \mathbb{R}$, Pacific J. Math., to appear. | DOI | MR
- ,[11] Superfícies em certos espaços homogêneos tridimensionais, Ph.D. Thesis, University of Campinas (2005), available online at http://libdigi.unicamp.br/document/?code=vtls000364041.
,[12] Geometria delle superfici in certi spazi omogenei tridimensionali, Boll. Un. Mat. Ital. A (8) 9 (2006), 267-270. | fulltext bdim | fulltext EuDML
,[13] Minimal surfaces in $\mathbb{R}^3$, Global differential geometry, MAA Stud. Math., 27, Math. Assoc. America, Washington, DC, (1989), 73-98. | MR
,[14] Minimal surfaces in $M \times \mathbb{R}$, Illinois Jour. Math., 46 (2002), 1177-1195. | MR | Zbl
,[15] Screw motion surfaces in $\mathbb{H}^2 \times \mathbb{R}$ and $\mathbb{S}^2 \times \mathbb{R}$, Illinois J. Math., 49 (2005), 1323-1362. | MR | Zbl
- ,