A Note on Surfaces in $\mathbb{H}^2 \times \mathbb{R}$
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 939-950.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this article we consider surfaces in the product space $\mathbb{H}^2 \times \mathbb{R}$ of the hyperbolic plane $\mathbb{H}^2$ with the real line. The main results are: a description of some geometric properties of minimal graphs; new examples of complete minimal graphs; the local classification of totally umbilical surfaces.
-In questo lavoro si considerano le superfici nel prodotto $\mathbb{H}^2 \times \mathbb{R}$ del piano iperbolico con la retta reale. I risultati principali sono: la descrizione geometrica di alcune proprietà dei grafici minimi; la determinazione di nuovi esempi di grafici minimi completi; la classificazione locale delle superfici totalmente ombelicali.
@article{BUMI_2007_8_10B_3_a33,
     author = {Montaldo, Stefano and Onnis, Irene I.},
     title = {A {Note} on {Surfaces} in $\mathbb{H}^2 \times \mathbb{R}$},
     journal = {Bollettino della Unione matematica italiana},
     pages = {939--950},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1183.53055},
     mrnumber = {2507907},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a33/}
}
TY  - JOUR
AU  - Montaldo, Stefano
AU  - Onnis, Irene I.
TI  - A Note on Surfaces in $\mathbb{H}^2 \times \mathbb{R}$
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 939
EP  - 950
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a33/
LA  - en
ID  - BUMI_2007_8_10B_3_a33
ER  - 
%0 Journal Article
%A Montaldo, Stefano
%A Onnis, Irene I.
%T A Note on Surfaces in $\mathbb{H}^2 \times \mathbb{R}$
%J Bollettino della Unione matematica italiana
%D 2007
%P 939-950
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a33/
%G en
%F BUMI_2007_8_10B_3_a33
Montaldo, Stefano; Onnis, Irene I. A Note on Surfaces in $\mathbb{H}^2 \times \mathbb{R}$. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 939-950. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a33/

[1] U. Abresch - H. Rosenberg, A Hopf differential for constant mean curvature surfaces in $\mathbb{S}^2 \times \mathbb{R}$ and $\mathbb{H}^2 \times \mathbb{R}$, Acta Math., 193 (2004), 141-174. | DOI | MR

[2] R. Caddeo - P. Piu - A. Ratto, SO(2)-invariant minimal and constant mean curvature surfaces in 3-dimensional homogeneous spaces, Manuscripta Math., 87 (1995), 1-12. | fulltext EuDML | DOI | MR | Zbl

[3] M. Dajczer, Submanifolds and isometric immersions, Mathematics Lecture Series, 13. Publish or Perish, Houston, 1990. | MR

[4] J. Eells - J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. | DOI | MR | Zbl

[5] I. Fernandez - P. Mira, Harmonic maps and constant mean curvature surfaces in $\mathbb{H}^2 \times \mathbb{R}$, arXiv:math.DG/0507386. | DOI | MR

[6] S. Montaldo - I. I. Onnis, Invariant CMC surfaces in $\mathbb{H}^2 \times \mathbb{R}$, Glasg. Math. J., 46 (2004), 311-321. | DOI | MR | Zbl

[7] S. Montaldo - I. I. Onnis, Invariant surfaces in $\mathbb{H}^2 \times \mathbb{R}$ with constant (Gauss or mean) curvature, Publ. de la RSME, 9 (2005), 91-103.

[8] W. Meeks Iii - H. Rosenberg, The theory of minimal surfaces in $M \times \mathbb{R}$, Comment. Math. Helv., 80 (2005), 811-858. | DOI | MR | Zbl

[9] B. Nelli - H. Rosenberg, Minimal surfaces in $\mathbb{H}^2 \times R$, Bull Braz. Math. Soc., 33 (2002), 263-292. | DOI | MR

[10] B. Nelli - H. Rosenberg, Global properties of constant mean curvature surfaces in $\mathbb{H}^2 \times \mathbb{R}$, Pacific J. Math., to appear. | DOI | MR

[11] I. I. Onnis, Superfícies em certos espaços homogêneos tridimensionais, Ph.D. Thesis, University of Campinas (2005), available online at http://libdigi.unicamp.br/document/?code=vtls000364041.

[12] I. I. Onnis, Geometria delle superfici in certi spazi omogenei tridimensionali, Boll. Un. Mat. Ital. A (8) 9 (2006), 267-270. | fulltext bdim | fulltext EuDML

[13] R. Osserman, Minimal surfaces in $\mathbb{R}^3$, Global differential geometry, MAA Stud. Math., 27, Math. Assoc. America, Washington, DC, (1989), 73-98. | MR

[14] H. Rosenberg, Minimal surfaces in $M \times \mathbb{R}$, Illinois Jour. Math., 46 (2002), 1177-1195. | MR | Zbl

[15] R. Saâ Earp - E. Toubiana, Screw motion surfaces in $\mathbb{H}^2 \times \mathbb{R}$ and $\mathbb{S}^2 \times \mathbb{R}$, Illinois J. Math., 49 (2005), 1323-1362. | MR | Zbl