Acute Triangulations of Doubly Covered Convex Quadrilaterals
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 933-938.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Motivated by various applications triangulations of surfaces using only acute triangles have been recently studied. Triangles and quadrilaterals can be triangulated with at most 7, respectively 10, acute triangles. Doubly covered triangles can be triangulated with at most 12 acute triangles. In this paper we investigate the acute triangulations of doubly covered convex quadrilaterals, and show that they can be triangulated with at most 20 acute triangles.
Recentemente, motivate da varie applicazioni, sono state studiate le triangolazioni di superfici utilizzando soltanto triangoli acutangoli. I triangoli e i quadrilateri possono essere triangolati, rispettivamente, con al più 10 triangoli acutangoli. I triangoli coperti doppiamente possono essere triangolati con al più 12 triangoli. In questo lavoro noi trattiamo le triangolazioni di quadrilateri convessi coperti doppiamente e mostriamo che tali quadrilateri possono essere triangolati con al più 20 triangoli acutangoli.
@article{BUMI_2007_8_10B_3_a32,
     author = {Yuan, Liping and Zamfirescu, Carol T.},
     title = {Acute {Triangulations} of {Doubly} {Covered} {Convex} {Quadrilaterals}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {933--938},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1185.52018},
     mrnumber = {2507906},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a32/}
}
TY  - JOUR
AU  - Yuan, Liping
AU  - Zamfirescu, Carol T.
TI  - Acute Triangulations of Doubly Covered Convex Quadrilaterals
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 933
EP  - 938
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a32/
LA  - en
ID  - BUMI_2007_8_10B_3_a32
ER  - 
%0 Journal Article
%A Yuan, Liping
%A Zamfirescu, Carol T.
%T Acute Triangulations of Doubly Covered Convex Quadrilaterals
%J Bollettino della Unione matematica italiana
%D 2007
%P 933-938
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a32/
%G en
%F BUMI_2007_8_10B_3_a32
Yuan, Liping; Zamfirescu, Carol T. Acute Triangulations of Doubly Covered Convex Quadrilaterals. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 933-938. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a32/

[1] B. S. Baker - E. Grosse - C. S. Rafferty, Nonobtuse triangulations of polygons, Discrete Comput. Geom., 3 (1988), 147-168. | fulltext EuDML | DOI | MR | Zbl

[2] M. Bern - S. Mitchell - J. Ruppert, Linear-size nonobtuse triangulations of polygons, Discrete Comput. Geom., 14 (1995), 411-428. | fulltext EuDML | DOI | MR | Zbl

[3] Y. D. Burago - V. A. Zalgaller, Polyhedral embedding of a net (Russian), Vestnik Leningrad. Univ., 15 (1960), 66-80. | MR | Zbl

[4] C. Cassidy - G. Lord, A square acutely triangulated, J. Recreational. Math., 13 (1980/81), 263-268. | MR

[5] M. Gardner, New Mathematical Diversions, Mathematical Association of America, Washington D.C., 1995. | MR | Zbl

[6] M. Goldberg, Problem E1406: Dissecting an obtuse triangle into acute triangles, American Mathematical Monthly, 67 (1960), 923.

[7] T. Hangan - J. Itoh - T. Zamfirescu, Acute triangulations, Bull. Math. Soc. Sci. Math. Roumanie, 43 (91) No. 3-4 (2000), 279-285. | MR | Zbl

[8] J. Itoh - T. Zamfirescu, Acute triangulations of the regular dodecahedral surface, Europ. J. Combinatorics, to appear. | DOI | MR | Zbl

[9] J. Itoh - T. Zamfirescu, Acute triangulations of the regular icosahedral surface, Discrete Comput. Geom., 31 (2004), 197-206. | DOI | MR | Zbl

[10] H. Maehara, On acute triangulations of quadrilaterals, Proceedings of JCDCG 2000, Lecture Notes in Computer Science, 2098 (2001), 237-354. | DOI | MR | Zbl

[11] H. Maehara, Acute triangulations of polygons, Europ. J. Combinatorics, 23 (2002), 45-55. | DOI | MR | Zbl

[12] L. Yuan, Acute triangulations of polygons, Discrete Comput. Geom., 34 (2005), 697- 706. | DOI | MR | Zbl

[13] C. Zamfirescu, Acute triangulations of the double triangle, Bull. Math. Soc. Sci. Math. Roumanie, 47, No. 3-4 (2004), 189-193. | MR | Zbl

[14] T. Zamfirescu, Acute triangulations: a short survey, Proc. 6th Annual Conference Romanian Soc. Math. Sciences, I (2002), 10-18. | MR