Some Separation Axioms Via Ideals
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 917-931.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We introduce a new class of spaces, called Hausdorff modulo $\mathcal{I}$ or $T_{2}$ mod $\mathcal{I}$ spaces with respect to an ideal $\mathcal{I}$ which contains the class of all Hausdorff spaces. Characterizations of these spaces are given and their properties are investigated. The concept of compactness modulo an ideal $\mathcal{I}$ was introduced by Newcomb in 1967 and studied by Hamlett and Jankovic in 1990. We study the properties of $\mathcal{I}$-compact subsets in Hausdorff modulo $\mathcal{I}$ spaces and generalize some results of Hamlett and Jankovic. $\mathcal{I}$-regular space was introduced by Hamlett and Jankovic in 1994. We further investigate the concept of $\mathcal{I}$-regularity with regard to its preservation by functions, subspaces and product.
Introduciamo una nuova classe di spazi, detti spazi di Hausdorff modulo $\mathcal{I}$ o $T_{2}$ mod $\mathcal{I}$ rispetto ad un ideale $\mathcal{I}$ che contiene la classe di tutti gli spazi di Hausdorff. Diamo delle caratterizzazioni di questi spazi e studiamo le loro proprietà. Il concetto di compattezza modulo un ideale $\mathcal{I}$ fu introdotto da Newcomb nel 1967 e studiato da Hamlett e Jankovic nel 1990. Studiamo le proprietà dei sottoinsiemi $\mathcal{I}$-compatti in spazi di Hausdorff modulo $\mathcal{I}$ e generalizziamo alcuni risultati di Hamlett e Jankovic. Gli spazi $\mathcal{I}$-regolari furono introdotti da Hamlett e Jankovic nel 1994. Studiamo ulteriormente il concetto di $\mathcal{I}$-regolarità rispetto alla sua conservazione da parte di funzioni, sottospazi e prodotto.
@article{BUMI_2007_8_10B_3_a31,
     author = {Sivaraj, D. and Renuka Devi, V.},
     title = {Some {Separation} {Axioms} {Via} {Ideals}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {917--931},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1182.54026},
     mrnumber = {2507905},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a31/}
}
TY  - JOUR
AU  - Sivaraj, D.
AU  - Renuka Devi, V.
TI  - Some Separation Axioms Via Ideals
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 917
EP  - 931
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a31/
LA  - en
ID  - BUMI_2007_8_10B_3_a31
ER  - 
%0 Journal Article
%A Sivaraj, D.
%A Renuka Devi, V.
%T Some Separation Axioms Via Ideals
%J Bollettino della Unione matematica italiana
%D 2007
%P 917-931
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a31/
%G en
%F BUMI_2007_8_10B_3_a31
Sivaraj, D.; Renuka Devi, V. Some Separation Axioms Via Ideals. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 917-931. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a31/

[1] M.E. Abd El-Monsef - R.A. Mahmoud - A. A. Nasef, On quasi $\mathcal{I}$-openness and quasi $\mathcal{I}$-continuity, Tamkang J. Maths., 31 (2000), 101-108. | MR | Zbl

[2] J. Dontchev, On Hausdorff spaces via topological ideals and $\mathcal{I}$-irresolute functions, Annals of the New York Academy of Sciences, 767 (1995), 28-38. | DOI | MR | Zbl

[3] J. Dontchev - M. Ganster, On compactness with respect to countable extensions of ideals and the generalized Banach category Theorem, Acta. Math. Hung., 88 (2000), 53-58. | DOI | MR | Zbl

[4] J. Dontchev - M. Ganster - D. Rose, Ideal resolvability, Topology and its Applications, 93 (1999), 1-16. | DOI | MR

[5] T. R. Hamlett - D. Rose, *-topological properties, Inter. J. Math. and Math. Sci., 13 (1990), 507-512. | fulltext EuDML | DOI | MR

[6] T. R. Hamlett - D. Rose, Local compactness with respect to an ideal, Kyungpook Math. J., 32 (1992), 31-43. | MR | Zbl

[7] T.R. Hamlett - D. Jankovic, Compactness with respect to an Ideal, Boll. U.M.I., (7) 4-B (1990), 849-861. | MR | Zbl

[8] D. Jankovic - T.R. Hamlett, Compatible Extensions of Ideals, Boll.U.M.I., (7) 6-B (1992), 453-465. | MR | Zbl

[9] T. R. Hamlett - D. Jankovic - D. Rose, Countable Compactness with respect to an Ideal, Math. Chronicle, 20 (1991), 109-126. | MR | Zbl

[10] T. R. Hamlett - D. Jankovic, On weaker forms of paracompactness, countable compactness and Lindelofness, Annals of the New York Academy of Sciences, Papers on General Topology and Applications, 728 (1994), 41-49. | DOI | MR | Zbl

[11] D. Jankovic - T.R. Hamlett, New Topologies from old via Ideals, Amer. Math. Monthly, 97, No. 4 (1990), 295-310. | DOI | MR | Zbl

[12] J. Kaniewski - Z. Piotrowski, Concerning continuity apart from a meager set, Proc. Amer. Math. Soc., 98 (1986), 324-328. | DOI | MR | Zbl

[13] K. Kuratowski, Topology, Vol I, Academic Press, New York,1966. | MR

[14] A. A. Nasef, On Hausdorff spaces via ideals and quasi I-irresolute functions, Chaos, Solitons and Fractals, 14 (2002), 619-625. | DOI | MR | Zbl

[15] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.

[16] D. A. Rose - D. Jankovic, On functions having the property of Baire, Real Analysis Exchange, 19 (2) (1993/94), 589-597. | MR | Zbl

[17] C. T. Scarborough - A. H. Stone, Product of Nearly compact Spaces, Trans. Amer. Math. Soc., 124 (1966), 131-147. | DOI | MR | Zbl

[18] R. Vaidyanathaswamy, The Localization Theory in Set Topology, Proc. Indian Acad. Sci., 20 (1945), 51-61. | MR | Zbl

[19] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960. | MR