The Banach-Lie Group of Lie Automorphisms of an $H^*$-Algebra
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 623-631.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the Banach-Lie group $\operatorname{Aut}(A^-)$ of Lie automorphisms of a complex associative $H^*$-algebra. Also some consequences about its Lie algebra, the algebra of Lie derivations of $A$, are obtained. For a topologically simple $A$, in the infinite-dimensional case we have $\operatorname{Aut}(A^-)_0 = \operatorname{Aut}(A)$ implying $\operatorname{Der}(A) = \operatorname{Der}(A^-)$. In the finite dimensional case $\operatorname{Aut}(A^{-})_{0}$ is a direct product of $\operatorname{Aut}(A)$ and a certain subgroup of Lie derivations $\delta$ from $A$ to its center, annihilating commutators.
Studiamo il gruppo di Banach-Lie $\operatorname{Aut}(A^-)$ degli automorfismi di Lie di una $H^*$-algebra associativa complessa. Vengono anche ottenute alcune conseguenze riguardanti la sua algebra di Lie, cioè l'algebra delle derivazioni di Lie di $A$. Per una $A$ topologicamente semplice, nel caso di dimensione infinita si ha $\operatorname{Aut}(A^-)_0 = \operatorname{Aut}(A)$, il che implica che $\operatorname{Der}(A) = \operatorname{Der}(A^-)$. Nel caso di dimensione finita, $\operatorname{Aut}(A^-)_{0}$ è il prodotto diretto di $\operatorname{Aut}(A)$ e di un certo sottogruppo di derivazioni di Lie $\delta$ da $A$ al suo centro, che annullano i commutatori.
@article{BUMI_2007_8_10B_3_a10,
     author = {Calder\'on Mart{\'\i}n, Antonio J. and Mart{\'\i}n Gonz\'alez, Candido},
     title = {The {Banach-Lie} {Group} of {Lie} {Automorphisms} of an $H^*${-Algebra}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {623--631},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1145.46033},
     mrnumber = {2351534},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a10/}
}
TY  - JOUR
AU  - Calderón Martín, Antonio J.
AU  - Martín González, Candido
TI  - The Banach-Lie Group of Lie Automorphisms of an $H^*$-Algebra
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 623
EP  - 631
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a10/
LA  - en
ID  - BUMI_2007_8_10B_3_a10
ER  - 
%0 Journal Article
%A Calderón Martín, Antonio J.
%A Martín González, Candido
%T The Banach-Lie Group of Lie Automorphisms of an $H^*$-Algebra
%J Bollettino della Unione matematica italiana
%D 2007
%P 623-631
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a10/
%G en
%F BUMI_2007_8_10B_3_a10
Calderón Martín, Antonio J.; Martín González, Candido. The Banach-Lie Group of Lie Automorphisms of an $H^*$-Algebra. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 623-631. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a10/

[1] W. Ambrose, Structure theorems for a special class of Banach Algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386. | DOI | MR | Zbl

[2] M. Brešar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525-546. | DOI | MR | Zbl

[3] M. Cabrera - J. Martínez - A. Rodríguez, Structurable $H^*$-algebras, J. Algebra 147 (1992) 19-62. | DOI | MR

[4] A. J. Calderón - C. Martín, Lie isomorphisms on $H^*$-algebras, Comm. Algebra, 31 No. 1 (2003), 333-343. | DOI | MR

[5] J. A. Cuenca, Sobre $H^*$-álgebras no asociativas. Teoría de estructura de las $H^*$-álgebras de Jordan no conmutativas semisimples, Tesis Doctoral, Universidad de a Granada, 1982. | MR

[6] J. A. Cuenca - A. García - C. Martín, Structure Theory for $L^*$-álgebras, Math. Proc. Cambridge Philos. Soc. 107, No. 2 (1990), 361-365. | DOI | MR

[7] J. A. Cuenca - A. Rodríguez, Structure Theory for noncommutative Jordan $H^*$-algebras, J. Algebra, 106 (1987), 1-14. | DOI | MR

[8] N. Jacobson, Lie algebras, Interscience. 1962. | MR

[9] N. Jacobson, Structure of Rings, Colloq. Publ. Vol. 37, Amer. Math. Soc., second edition, 1956. | MR | Zbl

[10] I. Kaplansky, Lie algebras and locally compact groups, The University of Chicago Press. 1971. | MR | Zbl

[11] M. Mathieu - A. R. Villena, Lie and Jordan derivations from Von Neumann Algebras, Preprint.

[12] J. R. Schue, Hilbert Space methods in the theory of Lie algebras, Trans. Amer. Math. Soc., 95 (1960), 69-80. | DOI | MR | Zbl

[13] H. Schröder, On the topology of the group of invertible elements, arXiv:math.KT/9810069v1, 1998.

[14] H. Upmeier, Symmetric Banach Manifolds and Jordan $C^*$-algebras, North-Holland Math. Studies, 104 (1985). | MR

[15] A. R. Villena, Continuity of Derivations on $H^*$-algebras, Proc. Amer. Math. Soc., 122 (1994), 821-826. | DOI | MR | Zbl