Scattering Matrix for the Reflection-Transmission Problem in a Viscoelastic Medium
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 521-533.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The reflection-transmission problem of time-harmonic waves in a viscoelastic, anisotropic and stratified solid is examined. The medium is supposed to occupy the whole space. The waves are sent either from upwards or downwards with oblique incidence. The scattering matrix is defined by generalizing the procedure followed in the scalar case, namely, when the solid is isotropic and the wave incidence is normal. Existence, uniqueness and properties of the scattering matrix are discussed.
In questo articolo si studia un problema di riflessione e trasmissione per onde di tipo armonico nel tempo, che si propagano in un solido viscoelastico, anisotropo, stratificato. Si assume che il mezzo occupi l'intero spazio e che le onde siano inviate dall'alto o dal basso con incidenza obliqua. La matrice di scattering è definita generalizzando la costruzione seguita nel caso scalare, cioè quando il solido è isotropo e l'incidenza delle onde è normale. Si discutono l'esistenza, l'unicità e alcune proprietà della matrice di scattering.
@article{BUMI_2007_8_10B_3_a1,
     author = {Berti, Alessia},
     title = {Scattering {Matrix} for the {Reflection-Transmission} {Problem} in a {Viscoelastic} {Medium}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {521--533},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {3},
     year = {2007},
     zbl = {1139.74419},
     mrnumber = {2351526},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a1/}
}
TY  - JOUR
AU  - Berti, Alessia
TI  - Scattering Matrix for the Reflection-Transmission Problem in a Viscoelastic Medium
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 521
EP  - 533
VL  - 10B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a1/
LA  - en
ID  - BUMI_2007_8_10B_3_a1
ER  - 
%0 Journal Article
%A Berti, Alessia
%T Scattering Matrix for the Reflection-Transmission Problem in a Viscoelastic Medium
%J Bollettino della Unione matematica italiana
%D 2007
%P 521-533
%V 10B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a1/
%G en
%F BUMI_2007_8_10B_3_a1
Berti, Alessia. Scattering Matrix for the Reflection-Transmission Problem in a Viscoelastic Medium. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 3, pp. 521-533. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_3_a1/

[1] R. Burridge, The Gelfand-Levitan, the Marchenko and the Gopinath-Sondhi integral equations of inverse scattering theory, regarded in the context of implulse-response problems, Wave Motion, 2 (4) (1980), 305-323. | DOI | MR | Zbl

[2] C. Caviglia - M. Morro, Existence and uniqueness in the reflection-transmission problem, Quart. J. Mech. Appl. Math., 52 (4) (1999), 543-564. | DOI | MR | Zbl

[3] C. Caviglia - M. Morro, Existence and uniqueness of the solution in the frequency domain for the reflection-transmission problem in a viscoelastic layer, Arch. Mech., 56 (1) (2004), 59-82. | MR | Zbl

[4] E. A. Coddington - N. Levinson, Theory of ordinary differential equations, International series in Pure and Applied Mathematics, 1955. | MR

[5] P. Deift - E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math., 32 (2) (1979), 121-251. | DOI | MR | Zbl

[6] M. Destrade - P. A. Martin - T. C. T. Ting, The incompressible limit in linear anisotropic elasticity with applications to surface waves and elastostatic, J. Mech. Phys. Solids, 50 (7) (2002) 1453-1468. | DOI | MR | Zbl

[7] A. C. Eringen, Continuum Physics. Vol II Continuum Mechanics of single-substance bodies, Academic Press, New York - London, 1975. | MR

[8] M. Fabrizio - A. Morro, Mathematical problems in linear viscoelasticity, Am. Math. Soc. Transl., 65 (2) (1967), 139-166. | DOI | MR

[9] L. D. Faddeev, Properties of the S-matrix of the one-dimensional Schrödinger equation, Am. Math. Soc. Transl., 65 (2) (1967), 139-166.

[10] Y. Fu - A. Mielke, A new identify for the surface-impedance matrix and its application to the determination of surface-wave speeds, Comm. Pure Appl. Math., 32 (2) (1979), 121-251.

[11] N. I. Grinberg, Inverse scattering problem for an elastic layered medium, Inverse Problems, 7 (4) (1991), 567-576. | MR | Zbl

[12] P. Lancaster - M. Tismenetsky, The theory of matrices, Academic, Orlando 1985. | MR | Zbl

[13] A. N. Stroh, Steady state problems in anisotropic elasticity, J. Math. and Phys., 41 (1962), 77-103. | MR | Zbl

[14] J. Sylvester - D. Winebrenner - F. Gylys-Colwell, Layer stripping for the Helmholtz equation, SIAM J. Appl. Math., 56 (3) (1996), 736-754. | DOI | MR | Zbl

[15] J. Sylvester - D. Winebrenner, Linear and nonlinear inverse scattering, SIAM J. Appl. Math., 59 (2) (1999), 669-699. | DOI | MR | Zbl