Sur Une Formule de Castelnuovo Pour Les Espaces Multisécants
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 381-387
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $v_k$ be the number of $(k-2)$-dimensional subspaces of $P^{2k-2}$ which are $k$-secant to a curve $C$ (of degree $n$ and genus $g$). Castelnuovo (1889) gave a formula for $v_k$ (see [2]); one has a modern proof in the monograph [1]. Here we give explicitly the generating function of the series $\sum_{k\ge 0}v_kt^k \in Z[[t]]$, without using Castelnuovo's results.
@article{BUMI_2007_8_10B_2_a7,
author = {Le Barz, Patrick},
title = {Sur {Une} {Formule} de {Castelnuovo} {Pour} {Les} {Espaces} {Multis\'ecants}},
journal = {Bollettino della Unione matematica italiana},
pages = {381--387},
publisher = {mathdoc},
volume = {Ser. 8, 10B},
number = {2},
year = {2007},
zbl = {1139.14042},
mrnumber = {2339448},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a7/}
}
Le Barz, Patrick. Sur Une Formule de Castelnuovo Pour Les Espaces Multisécants. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 381-387. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a7/