On the Information Dimensions
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 357-364.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A relationship between the information dimension and the average dimension of a measure is given. Properties of the average dimension are studied.
Si studiano i legami fra la dimensione informatica (information dimension) e la dimensione media (average dimension) della misura. Inoltre si dimostra che la dimensione media è positivamente lineare e continua rispetto della norma supremum nello spazio delle misure.
@article{BUMI_2007_8_10B_2_a5,
     author = {Myjak, J\'ozef and Rudnicki, Ryszard},
     title = {On the {Information} {Dimensions}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {357--364},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {2},
     year = {2007},
     zbl = {1178.28003},
     mrnumber = {2339446},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a5/}
}
TY  - JOUR
AU  - Myjak, Józef
AU  - Rudnicki, Ryszard
TI  - On the Information Dimensions
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 357
EP  - 364
VL  - 10B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a5/
LA  - en
ID  - BUMI_2007_8_10B_2_a5
ER  - 
%0 Journal Article
%A Myjak, Józef
%A Rudnicki, Ryszard
%T On the Information Dimensions
%J Bollettino della Unione matematica italiana
%D 2007
%P 357-364
%V 10B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a5/
%G en
%F BUMI_2007_8_10B_2_a5
Myjak, Józef; Rudnicki, Ryszard. On the Information Dimensions. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 357-364. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a5/

[1] M. Arbeiter - N. Patzschke, Random self-similar multifractals, Math. Nachr., 181 (1996), 5-42. | DOI | MR | Zbl

[2] C. D. Cutler, Some results on the behavior and estimation of the fractal dimensions of distribution on attractors, J. Statist. Phys., 62 (1991), 651-708. | DOI | MR | Zbl

[3] L. C. Evans - R. F. Gariepy, Measure Theory and Finite Properties of Functions, CRC Press Boca Raton, 1992. | MR | Zbl

[4] K. J. Falconer Techniques in Fractal Geometry, Wiley, Chichester, 1997. | MR | Zbl

[5] M.Guysinsky - S. Yaskolko, Coincidence of various dimensions associated with metrics and measures on metric spaces, Discrete Contin. Dynam. Systems, 3 (1997), 591-603. | DOI | MR | Zbl

[6] H. Hentschel - I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors, Phys. D, 8 (1983), 435-444. | DOI | MR | Zbl

[7] A. Lasota - M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics. Springer Applied Mathematical Sciences, 97, New York, 1994. | DOI | MR

[8] L. Olsen, A multifractal formalism, Adv. in Math., 116 (1995), 82-196. | DOI | MR | Zbl

[9] Y. B. Pesin, Dimension Theory in Dynamical Systems. Contemporary views and applications University of Chicago Press, Chicago, 1997, | DOI | MR

[10] Y. B. Pesin, On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions, J. Stat. Physics, 71 (1993), 529-547. | DOI | MR | Zbl

[11] K. Pichór - R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668-685. | DOI | MR | Zbl

[12] I. Procaccia - P. Grassberger - H. G. E. Hentschel, On the characterization of chaotic motions, in Dynamical systems and chaos (Sitges/Barcelona, 1982), Lecture Notes in Phys., 179 Springer Berlin (1983), 212-222.

[13] R. Riedi, An improved multifractal formalism and self-similar measures, J. Math. Anal. Appl., 189 (1995), 462-490. | DOI | MR | Zbl

[14] L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems, 2 (1982), 109-124. | MR