The Boltzmann Equation: Mathematics and Applications
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 293-315
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
The paper is subdivided into two parts. The first presents a recent result by the author concerning the existence of the solution of the Boltzmann equation for Maxwell molecules, without any cutoff in the collision kernel, when the solution depends on just one variable. At variance with the well-known theorem of DiPerna- Lions, conservation of energy is also shown to hold. The second part will concern rarefied gas dynamics problems, governed by the Boltzmann equation and con- cerning the theory of micromachines (MEMS) and nanomachines (NENS).
@article{BUMI_2007_8_10B_2_a2,
author = {Cercignani, Carlo},
title = {The {Boltzmann} {Equation:} {Mathematics} and {Applications}},
journal = {Bollettino della Unione matematica italiana},
pages = {293--315},
year = {2007},
volume = {Ser. 8, 10B},
number = {2},
zbl = {1178.82042},
mrnumber = {2339443},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a2/}
}
Cercignani, Carlo. The Boltzmann Equation: Mathematics and Applications. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 293-315. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a2/