Groups Generated by (near) Mutually Engel Periodic Pairs
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 485-497
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We use notations: $[x, y]=[x_{,1} y]$ and $[x_{,k+1} y]$ e $[[x_{,k} y], y]$. We consider groups generated by $x$, $y$ satisfying relations $x = [x_{,n} y], y = [y_{,n} x]$ or $[x, y]=[x_{,n} y]$, $[y, x]=[y_{,n} x]$. We call groups of the first type mep-groups and of the second type nmep-groups. We show many properties and examples of mep- and nmep-groups. We prove that if $p$ is a prime then the group $Sl_2(p)$ is a nmep-group. We give the necessary and sufficient conditions for metacyclic group to be a nmep-group and we show that nmep-groups with presentation $\langle x,y \mid [x,y] = [x_{,2} y], [y,x]=[y_{,2} x], x^n, y^m \rangle$ are finite.
@article{BUMI_2007_8_10B_2_a15,
author = {S{\l}anina, Piotr and Tomaszewski, Witold},
title = {Groups {Generated} by (near) {Mutually} {Engel} {Periodic} {Pairs}},
journal = {Bollettino della Unione matematica italiana},
pages = {485--497},
year = {2007},
volume = {Ser. 8, 10B},
number = {2},
zbl = {1167.20018},
mrnumber = {2339456},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a15/}
}
TY - JOUR AU - Słanina, Piotr AU - Tomaszewski, Witold TI - Groups Generated by (near) Mutually Engel Periodic Pairs JO - Bollettino della Unione matematica italiana PY - 2007 SP - 485 EP - 497 VL - 10B IS - 2 UR - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a15/ LA - en ID - BUMI_2007_8_10B_2_a15 ER -
Słanina, Piotr; Tomaszewski, Witold. Groups Generated by (near) Mutually Engel Periodic Pairs. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 485-497. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a15/