Groups Generated by (near) Mutually Engel Periodic Pairs
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 485-497.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We use notations: $[x, y]=[x_{,1} y]$ and $[x_{,k+1} y]$ e $[[x_{,k} y], y]$. We consider groups generated by $x$, $y$ satisfying relations $x = [x_{,n} y], y = [y_{,n} x]$ or $[x, y]=[x_{,n} y]$, $[y, x]=[y_{,n} x]$. We call groups of the first type mep-groups and of the second type nmep-groups. We show many properties and examples of mep- and nmep-groups. We prove that if $p$ is a prime then the group $Sl_2(p)$ is a nmep-group. We give the necessary and sufficient conditions for metacyclic group to be a nmep-group and we show that nmep-groups with presentation $\langle x,y \mid [x,y] = [x_{,2} y], [y,x]=[y_{,2} x], x^n, y^m \rangle$ are finite.
Scriviamo $[x, y]=[x_{,1} y]$ e $[x_{,k+1} y]$ e $[[x_{,k} y], y]$. Nel presente mostriamo certe proprietà ed esempio dei gruppi con i generatori $x$, $y$ tali che $x = [x_{,n} y], y = [y_{,n} x]$ o $[x, y]=[x_{,n} y]$, $[y, x]=[y_{,n} x]$.
@article{BUMI_2007_8_10B_2_a15,
     author = {S{\l}anina, Piotr and Tomaszewski, Witold},
     title = {Groups {Generated} by (near) {Mutually} {Engel} {Periodic} {Pairs}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {485--497},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {2},
     year = {2007},
     zbl = {1167.20018},
     mrnumber = {2339456},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a15/}
}
TY  - JOUR
AU  - Słanina, Piotr
AU  - Tomaszewski, Witold
TI  - Groups Generated by (near) Mutually Engel Periodic Pairs
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 485
EP  - 497
VL  - 10B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a15/
LA  - en
ID  - BUMI_2007_8_10B_2_a15
ER  - 
%0 Journal Article
%A Słanina, Piotr
%A Tomaszewski, Witold
%T Groups Generated by (near) Mutually Engel Periodic Pairs
%J Bollettino della Unione matematica italiana
%D 2007
%P 485-497
%V 10B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a15/
%G en
%F BUMI_2007_8_10B_2_a15
Słanina, Piotr; Tomaszewski, Witold. Groups Generated by (near) Mutually Engel Periodic Pairs. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 485-497. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a15/

[1] H.S.M. Coxeter, W.O.J. Moser, Generators and Relations for Discrete Groups, Berlin-Heildeberg-New York 1980. | MR | Zbl

[2] H. Heineken, Groups generated by two mutually Engel Periodic elements, Bolletino U.M.I., (8) 3-B (2000), 461-470. | fulltext EuDML | MR | Zbl

[3] M.I. Kargapolov, Ju. I. Merzljakov, Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979. | MR | Zbl

[4] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, Dover Publications, Inc. New York 1976. | MR

[5] J.J. Rotman, An Introduction to the Theory of Groups, Springer-Verlag, Inc. New York 1995. | DOI | MR | Zbl

[6] H.J. Zassenhaus, The Theory of Groups, Dover Publications, Inc., Mineola, New York 1999. | MR | Zbl