On Ponomarev-Systems
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 455-467.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper the relations of mappings and families of subsets are investigated in Ponomarev-systems, and the following results are obtained. (1) $f$ is a sequence-covering (resp. 1-sequence-covering) mapping iff $\mathcal{P}$ is a csf -network (resp. snf -network) of $X$ for a Ponomarev-system $(f, M, X, \mathcal{P})$; (2) $f$ is a sequence-covering (resp. 1-sequence-covering) mapping iff every $\mathcal{P}_n$ is a cs-cover (resp. wsn-cover) of$X$ for a Ponomarev-system $(f, M, X, \{\mathcal{P}_n \})$. As applications of these results, some relations between sequence-covering mappings and 1-sequence-covering mappings are discussed, and a question posed by S. Lin is answered.
In questo lavoro vengono studiate le relazioni fra mappe e famiglie di sottoinsiemi nei sistemi di Ponomarev, e si ottengono i seguenti risultati. (1) $f$ è una "sequence-covering'" (risp. una "1-sequence-covering") mappa se e solo se $\mathcal{P}$ è una csf rete (risp. una snf rete) di $X$ per un sistema di Ponomarev $(f, M, X, \mathcal{P})$; (2) $f$ è una "sequence-covering" (risp. una "1-sequence-covering") mappa se e solo se ogni $\mathcal{P}_n$ è un cs ricoprimento (risp. un wsn ricoprimento) di $X$ per un sistema di Ponomarev $(f, M, X, \{\mathcal{P}_n \})$. Come applicazione di questi risultati vengono discusse alcune relazioni fra "sequence-covering" mappe e "1-sequence-covering" mappe, e si fornisce la risposta a una domanda posta da S. Lin.
@article{BUMI_2007_8_10B_2_a13,
     author = {Ge, Ying and Shou, Lin},
     title = {On {Ponomarev-Systems}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {455--467},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {2},
     year = {2007},
     zbl = {1143.54003},
     mrnumber = {2339454},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a13/}
}
TY  - JOUR
AU  - Ge, Ying
AU  - Shou, Lin
TI  - On Ponomarev-Systems
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 455
EP  - 467
VL  - 10B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a13/
LA  - en
ID  - BUMI_2007_8_10B_2_a13
ER  - 
%0 Journal Article
%A Ge, Ying
%A Shou, Lin
%T On Ponomarev-Systems
%J Bollettino della Unione matematica italiana
%D 2007
%P 455-467
%V 10B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a13/
%G en
%F BUMI_2007_8_10B_2_a13
Ge, Ying; Shou, Lin. On Ponomarev-Systems. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 2, pp. 455-467. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_2_a13/

[1] Y. Ge, Spaces with countable sn-networks, Comment Math. Univ. Carolinae, 45 (2004), 169-176. | fulltext EuDML | MR | Zbl

[2] Y. Ge, Mappings in Ponomarev-Systems, Topology Proc., 29 (2005), 141-153. | MR | Zbl

[3] G. Gruenhage - E. Michael - Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math., 113 (1984), 303-332. | MR | Zbl

[4] J. A. Guthrie, A characterization of $\aleph_0$-spaces, General Topology Appl., 1 (1971), 105-110. | MR | Zbl

[5] S. Lin, A note on the Arens' spaces and sequential fan, Topology Appl., 81 (1997), 185-196. | DOI | MR | Zbl

[6] S. Lin, Point-Countable Covers and Sequence-Covering Mappings, Beijing: Chinese Science Press, 2002 (in Chinese). | MR | Zbl

[7] S. Lin, A note on sequence-covering mappings, Acta Math. Hungar., 107 (2005), 187- 191. | DOI | MR | Zbl

[8] S. Lin - P. Yan, Sequence-covering maps of metric spaces, Topology Appl., 109 (2001), 301-314. | DOI | MR | Zbl

[9] S. Lin - P. Yan, Notes on cfp-covers, Comment Math. Univ. Carolinae, 44 (2003), 295- 306. | fulltext EuDML | MR | Zbl

[10] E. Michael, $\aleph_0$-spaces, J. Math. Mech., 15 (1966), 983-1002. | MR

[11] V. I. Ponomarev, Axiom of countability and continuous mappings, Bull. Pol. Acad. Math., 8 (1960), 127-133. | MR | Zbl

[12] F. Siwiec, Sequence-covering and countably bi-quotient mappings, General Topology Appl., 1 (1971), 143-154. | MR | Zbl

[13] Y. Tanaka - Y. Ge, Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math., 32 (2006), 99-117. | MR | Zbl

[14] P. Yan, On strong sequence-covering compact mapppings, Northeastem Math J., 14 (1998), 341-344. | MR | Zbl