Systems of Inclusions Involving Fredholm Operators and Noncompact Maps
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 119-158.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the existence of solutions to the system of two inclusions involving Fredholm operators of nonnegative index and the so-called fundamentally restrictible maps with not necessarily convex values. We apply the technique of a solution map and, since the assumptions admit a 'dimension defect', we use the coincidence index, i.e. the homotopy invariant based on the cohomotopy theory. Two examples of applications to boundary value problems are included.
In questa nota si studia l'esistenza di soluzioni per un sistema di due inclusioni con operatori di Fredholm aventi indice non negativo e multifunzioni «fondamentalmente restringibili» e a valori non necessariamente convessi. Si applica la tecnica della mappa soluzione e, poiché le ipotesi consentono un «difetto di dimensione», l'indice di coincidenza, cioé un invariante omotopico basato sulla teoria della co-omotopia. Si forniscono poi due applicazioni ai problemi ai limiti.
@article{BUMI_2007_8_10B_1_a7,
     author = {Gabor, Dorota},
     title = {Systems of {Inclusions} {Involving} {Fredholm} {Operators} and {Noncompact} {Maps}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {119--158},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {1},
     year = {2007},
     zbl = {1129.34006},
     mrnumber = {2310962},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a7/}
}
TY  - JOUR
AU  - Gabor, Dorota
TI  - Systems of Inclusions Involving Fredholm Operators and Noncompact Maps
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 119
EP  - 158
VL  - 10B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a7/
LA  - en
ID  - BUMI_2007_8_10B_1_a7
ER  - 
%0 Journal Article
%A Gabor, Dorota
%T Systems of Inclusions Involving Fredholm Operators and Noncompact Maps
%J Bollettino della Unione matematica italiana
%D 2007
%P 119-158
%V 10B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a7/
%G en
%F BUMI_2007_8_10B_1_a7
Gabor, Dorota. Systems of Inclusions Involving Fredholm Operators and Noncompact Maps. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 119-158. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a7/

[1] R. R. Akhmerov - M. I. Kamenskii - A. S. Potapov - A. E. Rodkina - B. N. Sadovskii, Measures of noncompactness and condensing operators, Birkhäuser Verlag, Basel-Boston-Berlin 1992. | DOI | MR | Zbl

[2] YU. G. Borisovich, Modern approach to the theory of topological characteristics of nonlinear operators, Lecture Notes in Math. 1334, Springer, Berlin, New York 1988. | DOI | MR | Zbl

[3] K. Borsuk, Theory of retracts, PWN, Warszawa 1967. | MR | Zbl

[4] H. Brezis, Analyse Fonctionelle, Masson, Paris 1983. | MR

[5] J. Bryszewski - L. Górniewicz, Multivalued maps of subsets of Euclidean spaces, Fund. Math. 90 (1976), 233-251. | fulltext EuDML | DOI | MR | Zbl

[6] J. Bryszewski, On a class of multi-valued vector fields in Banach spaces Fund. Math. 97 (1977), 79-94. | fulltext EuDML | MR | Zbl

[7] Yu. G. Borisovich - B. D. Gelman - A. D. Myshkis - V. V. Obukhovskii, Topological methods in the fixed point theory of multivalued mappings, Russian Math. Surveys 35 (1980), 65-143. | MR

[8] G. Conti - W. Kryszewski - P. Zecca, On the solvability of systems of non-convex inclusions in Banach spaces, Ann. Mat. pura Appl. CLX (1991), 371-408. | DOI | MR | Zbl

[9] L. H. Erbe - W. Krawcewicz - J. H. Wu, A composite coincidence degree with applications to boundary value problems of neutral equations, Trans. Amer. Math. Soc. 335, 2 (1993), 459-478. | DOI | MR | Zbl

[10] D. Gabor, The coincidence index for fundamentally contractible multivalued maps with nonconvex values, Ann. Polon. Math. 75 (2), (2000), 143-166. | fulltext EuDML | DOI | MR | Zbl

[11] D. Gabor, Coincidence points of Fredholm operators and noncompact set-valued maps, (in Polish), PhD Thesis, Torun 2001.

[12] D. Gabor - W. Kryszewski, On the solvability of systems of nonconvex and noncompact inclusions in Banach spaces, Diff. Equations and Dynamical Systems 6 (1998), 377-403. | MR | Zbl

[13] D. Gabor - W. Kryszewski, A coincidence theory involving Fredholm operators of nonnegative index, Topol. Methods Nonlinear Anal. 15 (2000), 43-59. | DOI | MR | Zbl

[14] D. Gabor - W. Kryszewski, Systems of nonconvex inclusions involving Fredholm operators of nonnegative index, Set-Valued Anal. 13 (2005), 337-379. | DOI | MR | Zbl

[15] K. Geba, Fredholm s-proper maps of Banach spaces, Fund. Math. 64 (1969), 341- 373. | fulltext EuDML | DOI | MR | Zbl

[16] S. Goldberg, Unbounded linear operators. Theory and applications, McGraw-Hill Book Co., 1966. | MR | Zbl

[17] L. Górniewicz, Topological fixed point theory of multivalued mappings, Kluwer Acad. Publ., Dordrecht, Boston, London 1999. | DOI | MR

[18] L. Górniewicz, Homological methods in fixed-point theory of multivalued maps, Dissertationes Math. 129 (1976), 1-66. | fulltext EuDML | MR

[19] S. T. Hu, Homotopy theory, Academic Press, New York 1959. | MR

[20] T. Kaczyński, Topological transversality of set-valued condensing maps, Doctoral Diss., McGill Univ., Montreal 1986.

[21] T. Kaczyński and W. Krawcewicz, Fixed point and coincidence theory for condensing maps, Preprint, 1984.

[22] W. Kryszewski, Topological and approximation methods in the degree theory of setvalued maps, Dissertationes Math. 336 (1994), 1-102. | MR

[23] W. Kryszewski, Some homotopy classification and extension theorems for the class of compositions of acyclic set-valued maps, Bull. Sci. Math. 119 (1995), 21-48. | MR | Zbl

[24] W. Kryszewski, Remarks to the Vietoris Theorem, Topol. Methods Nonlinear Anal. 8 (1996), 371-382. | DOI | MR

[25] W. Kryszewski, Homotopy properties of set-valued mappings, Wyd. Uniwersytetu Mikolaja Kopernika, Toruń 1997. | Zbl

[26] I. Massabo - P. Nistri - J. Pejsachowicz, On the solvability of nonlinear equations in Banach spaces, Fixed Point Theory, (Proc. Sherbrooke, Quebec 1980), (E. Fadell and G. Fournier, eds.) Lecture Notes in Math. 886, Springer-Verlag, 1980, 270-289. | MR

[27] J. Mawhin, Nonlinear boundary value problems for ordinary differential equa- tions: from Schauder theory to stable homotopy, Collection Nonlinear analysis, Academic Press, New York 1978, 145-160. | MR

[28] J. Mawhin, Topological degree methods in nonlinear boundary value problems. CBMS Regional Conference Series in Mathematics 40, Amer. Math. Soc., Providence, R.I. 1979. | MR | Zbl

[29] J. Mawhin, Topological degree and boundary value problems for nonlinear differential equations, in M. Furi, P. Zecca eds., Topological Methods for ordinary differential equations. Lecture Notes in Math. 1537, Springer, Berlin, New York 1993, 74-142. | DOI | MR | Zbl

[30] P. Nistri, On a general notion of controllability for nonlinear systems Boll. Un. Mat. Ital., vol. V-C (1986), 383-403. | MR | Zbl

[31] P. Nistri - V. V. Obukhovskii - P. Zecca, On the solvability of systems of inclusions involving noncompact operators, Trans. Amer. Math. Soc. 342 (1994), 543-562. | DOI | MR | Zbl

[32] V. Obukhovskii - P. Zecca - V. Zvyagin, On the coincidence index for multivalued perturbations of nonlinear Fredholm and some applications, Abstract Appl. Anal. 7 (2002), 295-322. | fulltext EuDML | DOI | MR | Zbl

[33] W. V. Petryshyn - M. Fitzpatrick, A degree theory, fixed points theorems and mappings theorems for multivalued noncompact mappings, Trans. Amer. Math. Soc. 194 (1974), 1-25. | DOI | MR | Zbl

[34] E. Spanier, Algebraic Topology, McGraw-Hill Book Co., New York 1966. | MR

[35] A. S. Svarc, The homotopic topology of Banach spaces, Soviet Math. Dokl. 5 (1964), 57-59.

[36] R. M. Switzer, Algebraic topology - homotopy and homology, Springer-Verlag, Berlin 1975. | MR | Zbl

[37] P. P. Zabrejko - A. I. Koshelew - M. A. Krasnoselskij - S. G. Mikhlin - L. S. Rakovshchik - V. Ya. Stetsenko, Integral equations, Leyden, The Netherlands: Noordhoff International Publishing. XIX, (1975).