Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 63-81
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We prove global partial regularity of weaksolutions of the Dirichlet problem for the nonlinear superelliptic system $\operatorname{div} A(x,u,Du)+B(x, u, DU) = 0$, under natural polynomial growth of the coefficient functions $A$ and $B$. We employ the indirect method of the bilinear form and do not use a Caccioppoli or a reverse Hölder inequality.
@article{BUMI_2007_8_10B_1_a3,
author = {Hamburger, Christoph},
title = {Partial {Boundary} {Regularity} of {Solutions} of {Nonlinear} {Superelliptic} {Systems}},
journal = {Bollettino della Unione matematica italiana},
pages = {63--81},
publisher = {mathdoc},
volume = {Ser. 8, 10B},
number = {1},
year = {2007},
zbl = {1178.35178},
mrnumber = {2310958},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/}
}
TY - JOUR AU - Hamburger, Christoph TI - Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems JO - Bollettino della Unione matematica italiana PY - 2007 SP - 63 EP - 81 VL - 10B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/ LA - en ID - BUMI_2007_8_10B_1_a3 ER -
Hamburger, Christoph. Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 63-81. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/