Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 63-81

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove global partial regularity of weaksolutions of the Dirichlet problem for the nonlinear superelliptic system $\operatorname{div} A(x,u,Du)+B(x, u, DU) = 0$, under natural polynomial growth of the coefficient functions $A$ and $B$. We employ the indirect method of the bilinear form and do not use a Caccioppoli or a reverse Hölder inequality.
@article{BUMI_2007_8_10B_1_a3,
     author = {Hamburger, Christoph},
     title = {Partial {Boundary} {Regularity} of {Solutions} of {Nonlinear} {Superelliptic} {Systems}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {63--81},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {1},
     year = {2007},
     zbl = {1178.35178},
     mrnumber = {2310958},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/}
}
TY  - JOUR
AU  - Hamburger, Christoph
TI  - Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 63
EP  - 81
VL  - 10B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/
LA  - en
ID  - BUMI_2007_8_10B_1_a3
ER  - 
%0 Journal Article
%A Hamburger, Christoph
%T Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems
%J Bollettino della Unione matematica italiana
%D 2007
%P 63-81
%V 10B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/
%G en
%F BUMI_2007_8_10B_1_a3
Hamburger, Christoph. Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 63-81. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/