Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 63-81.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove global partial regularity of weaksolutions of the Dirichlet problem for the nonlinear superelliptic system $\operatorname{div} A(x,u,Du)+B(x, u, DU) = 0$, under natural polynomial growth of the coefficient functions $A$ and $B$. We employ the indirect method of the bilinear form and do not use a Caccioppoli or a reverse Hölder inequality.
Si dimostra un risultato di regolarità parziale globale per le soluzioni deboli del problema di Dirichlet associato al sistema superellittico non lineare $\operatorname{div} A(x,u,Du) + B(x, u, DU) = 0$ con ipotesi di crescita naturale polinomiale delle funzioni coefficienti $A$ e $B$. Si applica il metodo indiretto della forma bilineare e non si fa uso di una diseguaglianza di Caccioppoli né di una diseguaglianza di Hölder al contrario.
@article{BUMI_2007_8_10B_1_a3,
     author = {Hamburger, Christoph},
     title = {Partial {Boundary} {Regularity} of {Solutions} of {Nonlinear} {Superelliptic} {Systems}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {63--81},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {1},
     year = {2007},
     zbl = {1178.35178},
     mrnumber = {2310958},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/}
}
TY  - JOUR
AU  - Hamburger, Christoph
TI  - Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 63
EP  - 81
VL  - 10B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/
LA  - en
ID  - BUMI_2007_8_10B_1_a3
ER  - 
%0 Journal Article
%A Hamburger, Christoph
%T Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems
%J Bollettino della Unione matematica italiana
%D 2007
%P 63-81
%V 10B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/
%G en
%F BUMI_2007_8_10B_1_a3
Hamburger, Christoph. Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 63-81. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/

[1] F. Duzaar - J.F. Grotowski, Optimal interior partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation, Manuscr. Math., 103 (2000), 267-298. | DOI | MR | Zbl

[2] F. Duzaar - J. Kristensen - G. Mingione, The existence of regular boundary points for non-linear elliptic systems, To appear in: J. Reine Angew. Math. | DOI | MR | Zbl

[3] M. Frasca - A.V. Ivanov, Partial regularity for quasilinear nonuniformly elliptic systems of the general type, J. Math. Sci., New York, 77 (1995), 3178-3182. | DOI | MR

[4] M. Giaquinta, A counter-example to the boundary regularity of solutions to elliptic quasilinear systems, Manuscr. Math., 24 (1978), 217-220. | fulltext EuDML | DOI | MR | Zbl

[5] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton Univ. Press, Princeton, 1983. | MR | Zbl

[6] M. Giaquinta - G. Modica, Almost-everywhere regularity results for solutions of non linear elliptic systems, Manuscr. Math., 28 (1979), 109-158. | fulltext EuDML | DOI | MR | Zbl

[7] E. Giusti, Metodi diretti nel calcolo delle variazioni, UMI, Bologna, 1994. | MR

[8] J.F. Grotowski, Boundary regularity for nonlinear elliptic systems, Calc. Var., 15 (2002), 353-388. | DOI | MR | Zbl

[9] C. Hamburger, Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations, Ann. Mat. Pura Appl., 169 (1995), 321-354. | DOI | MR | Zbl

[10] C. Hamburger, Partial regularity for minimizers of variational integrals with discontinuous integrands, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 13 (1996), 255-282. | fulltext EuDML | DOI | MR | Zbl

[11] C. Hamburger, A new partial regularity proof for solutions of nonlinear elliptic systems, Manuscr. Math., 95 (1998), 11-31. | fulltext EuDML | DOI | MR | Zbl

[12] C. Hamburger, Partial regularity of solutions of nonlinear quasimonotone systems, Hokkaido Math. J., 32 (2003), 291-316. | DOI | MR | Zbl

[13] C. Hamburger, Partial regularity of minimizers of polyconvex variational integrals, Calc. Var., 18 (2003), 221-241. | DOI | MR | Zbl

[14] C. Hamburger, Optimal partial regularity of minimizers of quasiconvex variational integrals, To appear in: ESAIM Control Optim. Calc. Var. | fulltext EuDML | DOI | MR

[15] P.-A. Ivert, Regularittäsuntersuchungen von Lösungen elliptischer Systeme von quasilinearen Differentialgleichungen zweiter Ordnung, Manuscr. Math., 30 (1979), 53-88. | fulltext EuDML | DOI | MR | Zbl

[16] G. Mingione, The singular set of solutions to non-differentiable elliptic systems, Arch. Ration. Mech. Anal., 166 (2003), 287-301. | DOI | MR | Zbl

[17] G. Mingione, Bounds for the singular set of solutions to non linear elliptic systems, Calc. Var., 18 (2003), 373-400. | DOI | MR | Zbl

[18] Z. Tan, $C^{1,a}$partial regularity for nonlinear elliptic systems, Acta Math. Sci., 15 (1995), 254-263. | DOI | MR

[19] S. Yan - G. Li, $C^{1,a}$ partial regularity for solutions of nonlinear elliptic systems, Acta Math. Sci., 12 (1992), 33-41. | DOI | MR