Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 63-81 Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica

Voir la notice de l'article

We prove global partial regularity of weaksolutions of the Dirichlet problem for the nonlinear superelliptic system $\operatorname{div} A(x,u,Du)+B(x, u, DU) = 0$, under natural polynomial growth of the coefficient functions $A$ and $B$. We employ the indirect method of the bilinear form and do not use a Caccioppoli or a reverse Hölder inequality.
@article{BUMI_2007_8_10B_1_a3,
     author = {Hamburger, Christoph},
     title = {Partial {Boundary} {Regularity} of {Solutions} of {Nonlinear} {Superelliptic} {Systems}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {63--81},
     year = {2007},
     volume = {Ser. 8, 10B},
     number = {1},
     zbl = {1178.35178},
     mrnumber = {2310958},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/}
}
TY  - JOUR
AU  - Hamburger, Christoph
TI  - Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 63
EP  - 81
VL  - 10B
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/
LA  - en
ID  - BUMI_2007_8_10B_1_a3
ER  - 
%0 Journal Article
%A Hamburger, Christoph
%T Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems
%J Bollettino della Unione matematica italiana
%D 2007
%P 63-81
%V 10B
%N 1
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/
%G en
%F BUMI_2007_8_10B_1_a3
Hamburger, Christoph. Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 63-81. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a3/