Normal Forms and Long Time Existence for Semi-Linear Klein-Gordon Equations
Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 1-23.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We present in this text two results of long time existence for solutions of nonlinear Klein-Gordon equations, obtained through normal forms methods. In particular, we indicate how these methods allow one to obtain almost global solutions for that equation on spheres, despite the fact that such solutions do not go to zero when time goes to infinity.
Presentiamo in questo testo due risultati di esistenza di lungo periodo per soluzioni di equazioni non lineari di Klein-Gordon, ottenuti mediante metodi di forme normali. In particolare indichiamo come questi metodi permettono di ottenere soluzioni quasi globali per tale equazione sulle sfere, a dispetto del fatto che tali soluzioni non tendono a zero quando il tempo tende ad infinito.
@article{BUMI_2007_8_10B_1_a0,
     author = {Delort, Jean-Marc},
     title = {Normal {Forms} and {Long} {Time} {Existence} for {Semi-Linear} {Klein-Gordon} {Equations}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {Ser. 8, 10B},
     number = {1},
     year = {2007},
     zbl = {1178.35310},
     mrnumber = {2310955},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a0/}
}
TY  - JOUR
AU  - Delort, Jean-Marc
TI  - Normal Forms and Long Time Existence for Semi-Linear Klein-Gordon Equations
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 1
EP  - 23
VL  - 10B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a0/
LA  - en
ID  - BUMI_2007_8_10B_1_a0
ER  - 
%0 Journal Article
%A Delort, Jean-Marc
%T Normal Forms and Long Time Existence for Semi-Linear Klein-Gordon Equations
%J Bollettino della Unione matematica italiana
%D 2007
%P 1-23
%V 10B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a0/
%G en
%F BUMI_2007_8_10B_1_a0
Delort, Jean-Marc. Normal Forms and Long Time Existence for Semi-Linear Klein-Gordon Equations. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 1-23. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a0/

[1] D. Bambusi, Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys., 234, no. 2 (2003), 253-285. | DOI | MR | Zbl

[2] D. Bambusi - J.-M. Delort - B. Grébert - J. Szeftel, Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, to appear, Comm. Pure Appl. Math. | DOI | MR | Zbl

[3] D. Bambusi - B. Grébert, Birkhoff normal form for pdes with tame modulus, Duke Math. J., 135, no. 3 (2006), 507-567. | DOI | MR | Zbl

[4] J. Bourgain, Construction of approximative and almost periodic solutions of perturbed linear Schödinger and wave equations, Geom. Funct. Anal., 6, no. 2 (1996), 201-230. | fulltext EuDML | DOI | MR | Zbl

[5] Y. Colin De Verdiére, Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helv., 54, no. 3 (1979), 508-522. | fulltext EuDML | DOI | MR | Zbl

[6] J.-M. Delort, Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi linéaire à données petites en dimension 1, École Norm. Sup. (4) 34, no. 1 (2001), 1-61. Erratum, Ann. Sci. École Nor. Sup. (4) 39, no.2 (2006), 335-345. | fulltext EuDML | DOI | MR | Zbl

[7] J.-M. Delort - D. Fang - R. Xue, Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., 211, no. 2 (2004), 288-323. | DOI | MR | Zbl

[8] J.-M. Delort - J. Szeftel, Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Int. Math. Res. Not., no. 37 (2004), 1897-1966. | DOI | MR | Zbl

[9] J.-M. Delort - J. Szeftel, Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Amer. J. Math., 128, no. 5 (2006), 1187-1218. | MR | Zbl

[10] J. Duistermaat - V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29, no. 1 (1975), 39-79. | fulltext EuDML | DOI | MR | Zbl

[11] B. Grébert, Birkhoff normal form and hamiltonian PDEs, preprint, (2006).

[12] V. Guillemin, Lectures on spectral theory of elliptic operators, Duke Math. J., 44, no. 3 (1977), 485-517. | MR | Zbl

[13] L. Hörmander, Lectures on nonlinear hyperbolic differential equations, Mathématiques and Applications, 26, Springer-Verlag, Berlin, 1997. viii+289 pp. | MR

[14] S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., 38, no. 5 (1985), 631-641. | DOI | MR | Zbl

[15] H. Lindblad - A. Soffer, A remark on Long Range Scattering for the critical nonlinear Klein-Gordon equation, J. Hyperbolic Differ. Equ. 2, no. 1 (2005), 77-89. | DOI | MR | Zbl

[16] H. Lindblad - A. Soffer, A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation, Lett. Math. Phys., 73, no. 3 (2005), 249-258. | DOI | MR | Zbl

[17] K. Moriyama - S. Tonegawa - Y. Tsutsumi, Almost global existence of solutions for the quadratic semilinear Klein-Gordon equation in one space dimension, Funkcial. Ekvac., 40, no. 2 (1997), 313-333. | MR | Zbl

[18] T. Ozawa - K. Tsutaya - Y. Tsutsumi, Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z., 222, no. 3 (1996), 341-362. | fulltext EuDML | DOI | MR | Zbl

[19] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., 38 (1985), 685-696. | DOI | MR | Zbl

[20] A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J., 44, no. 4 (1977), 883-892. | MR | Zbl