Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2007_8_10B_1_a0, author = {Delort, Jean-Marc}, title = {Normal {Forms} and {Long} {Time} {Existence} for {Semi-Linear} {Klein-Gordon} {Equations}}, journal = {Bollettino della Unione matematica italiana}, pages = {1--23}, publisher = {mathdoc}, volume = {Ser. 8, 10B}, number = {1}, year = {2007}, zbl = {1178.35310}, mrnumber = {2310955}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a0/} }
TY - JOUR AU - Delort, Jean-Marc TI - Normal Forms and Long Time Existence for Semi-Linear Klein-Gordon Equations JO - Bollettino della Unione matematica italiana PY - 2007 SP - 1 EP - 23 VL - 10B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a0/ LA - en ID - BUMI_2007_8_10B_1_a0 ER -
Delort, Jean-Marc. Normal Forms and Long Time Existence for Semi-Linear Klein-Gordon Equations. Bollettino della Unione matematica italiana, Série 8, 10B (2007) no. 1, pp. 1-23. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10B_1_a0/
[1] Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys., 234, no. 2 (2003), 253-285. | DOI | MR | Zbl
,[2] Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, to appear, Comm. Pure Appl. Math. | DOI | MR | Zbl
- - - ,[3] Birkhoff normal form for pdes with tame modulus, Duke Math. J., 135, no. 3 (2006), 507-567. | DOI | MR | Zbl
- ,[4] Construction of approximative and almost periodic solutions of perturbed linear Schödinger and wave equations, Geom. Funct. Anal., 6, no. 2 (1996), 201-230. | fulltext EuDML | DOI | MR | Zbl
,[5] Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helv., 54, no. 3 (1979), 508-522. | fulltext EuDML | DOI | MR | Zbl
,[6] Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi linéaire à données petites en dimension 1, École Norm. Sup. (4) 34, no. 1 (2001), 1-61. Erratum, Ann. Sci. École Nor. Sup. (4) 39, no.2 (2006), 335-345. | fulltext EuDML | DOI | MR | Zbl
,[7] Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., 211, no. 2 (2004), 288-323. | DOI | MR | Zbl
- - ,[8] Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Int. Math. Res. Not., no. 37 (2004), 1897-1966. | DOI | MR | Zbl
- ,[9] Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Amer. J. Math., 128, no. 5 (2006), 1187-1218. | MR | Zbl
- ,[10] The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29, no. 1 (1975), 39-79. | fulltext EuDML | DOI | MR | Zbl
- ,[11] Birkhoff normal form and hamiltonian PDEs, preprint, (2006).
,[12] Lectures on spectral theory of elliptic operators, Duke Math. J., 44, no. 3 (1977), 485-517. | MR | Zbl
,[13] Lectures on nonlinear hyperbolic differential equations, Mathématiques and Applications, 26, Springer-Verlag, Berlin, 1997. viii+289 pp. | MR
,[14] Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., 38, no. 5 (1985), 631-641. | DOI | MR | Zbl
,[15] A remark on Long Range Scattering for the critical nonlinear Klein-Gordon equation, J. Hyperbolic Differ. Equ. 2, no. 1 (2005), 77-89. | DOI | MR | Zbl
- ,[16] A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation, Lett. Math. Phys., 73, no. 3 (2005), 249-258. | DOI | MR | Zbl
- ,[17] Almost global existence of solutions for the quadratic semilinear Klein-Gordon equation in one space dimension, Funkcial. Ekvac., 40, no. 2 (1997), 313-333. | MR | Zbl
- - ,[18] Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z., 222, no. 3 (1996), 341-362. | fulltext EuDML | DOI | MR | Zbl
- - ,[19] Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., 38 (1985), 685-696. | DOI | MR | Zbl
,[20] Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J., 44, no. 4 (1977), 883-892. | MR | Zbl
,