Alcune applicazioni della Matematica all'analisi dell'elettrocardiogramma
Bollettino della Unione matematica italiana, Série 8, 10A (2007) no. 3, pp. 537-561.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Questo lavoro si propone di far conoscere due importanti applicazioni della Matematica all'analisi dell'elettrocardiogramma(ECG). La prima eè quella del riconoscimento delle principali caratteristiche dell'ECG e in particolare del picco R, che corrisponde alla sistole. Si considerano due metodi: i filtri lineari e l'analisi multiscala basata sulle wavelet. La seconda riguarda l'analisi della serie temporale degli intervalli che separano due picchi R consecutivi dell'ECG (sequenza RR), che descrive l'andamento nel tempo della frequenza cardiaca. Qui i metodi considerati sono quelli dell'analisi spettrale e dell'analisi simbolica. Di quest'ultima si illustra un'applicazione all'analisi di sequenze RR di fibrillazione atriale.
his paper describes two important applications of Mathematics to the analysis of electrocardiograms (ECG). The first consists of the recognition of the main features of ECG, in particular of the R peak corresponding to systole. We consider two methods: the linear filters and the wavelet analysis. The second consists of the analysis of the time series of intervals between two consecutive R peaks (RR series) which describes the heart rate evolution. Here we consider two methods: spectral analysis and symbolic analysis. We give an application of symbolic analysis to atrial fibrillation RR series.
@article{BUMI_2007_8_10A_3_a5,
     author = {Cammarota, Camillo and Rogora, Enrico},
     title = {Alcune applicazioni della {Matematica} all'analisi dell'elettrocardiogramma},
     journal = {Bollettino della Unione matematica italiana},
     pages = {537--561},
     publisher = {mathdoc},
     volume = {Ser. 8, 10A},
     number = {3},
     year = {2007},
     zbl = {1071.92014},
     mrnumber = {2394382},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_3_a5/}
}
TY  - JOUR
AU  - Cammarota, Camillo
AU  - Rogora, Enrico
TI  - Alcune applicazioni della Matematica all'analisi dell'elettrocardiogramma
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 537
EP  - 561
VL  - 10A
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_3_a5/
LA  - it
ID  - BUMI_2007_8_10A_3_a5
ER  - 
%0 Journal Article
%A Cammarota, Camillo
%A Rogora, Enrico
%T Alcune applicazioni della Matematica all'analisi dell'elettrocardiogramma
%J Bollettino della Unione matematica italiana
%D 2007
%P 537-561
%V 10A
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_3_a5/
%G it
%F BUMI_2007_8_10A_3_a5
Cammarota, Camillo; Rogora, Enrico. Alcune applicazioni della Matematica all'analisi dell'elettrocardiogramma. Bollettino della Unione matematica italiana, Série 8, 10A (2007) no. 3, pp. 537-561. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_3_a5/

[1] P. S. Addison, Wavelet transforms and the ECG: a review, Physiol. Meas., 26 (2005), R155-R199.

[2] M. E. Cain et al., Signal-Averaged Electrocardiography JACC 27 (1996), 238-249.

[3] C. Albert - C. Yang, Shu-Shya Hseu, Huey-Wen, Yien, Ary L. Goldberger, C. - K. Peng, Linguistic Analysis of the Human Heartbeat Using Frequency and Rank Order Statistics, Phys. Rev. Lett., 90 (2003).

[4] R. Balocchi - D. Menicucci - L. Landini - E. Santarcangelo - L. Sebastiani - A. Gemignani - B. Ghelarducci - M. Varanini, Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition Chaos Solitons and Fractals 20 (2004), 171-177. | Zbl

[5] P. Bloomfield, Fourier analysis of time series. An introduction John Wiley and sons, New York, (2000) | DOI | MR | Zbl

[6] C. Cammarota - G. Guarini - M. Ambrosini, ``Analysis of stationary periods of heart rate via symbolic dynamics'', Medical Data Analysis, Lecture Notes in Computer Science vol. 2526, Colosimo, Giuliani and Sirabella eds. Springer 2002, 13-19. | Zbl

[7] C. Cammarota - E. Rogora, Testing indipendence in time series via universal distributions of permutations and words Int. J. Bif Chaos, 15 (2005), 1757-1765. | DOI | MR | Zbl

[8] C. Cammarota - E. Rogora, Independence and symbolic independence of nonstatio- nary heartbeat series during atrial fibrillation Physica A, 353 (2005), 323-335.

[9] C. Cammarota - E. Rogora, Time reversal, symbolic series and irreversibility To be published on Chaos, Solitons and Fractals. | DOI | MR | Zbl

[10] F. Censi et al., Recurrent patterns of atrial depolarization during atrial fibrillation assessed by recurrence plot quantification, Annals of Biomedical Engineering, 28 (2000), 61-70.

[11] P. Colli Franzone - L. Guerri - M. Pennacchio, Mathematical models and problems in electrocardiology, Riv. Mat. Univ. Parma, (6) 2* (1999) 123-142. | MR | Zbl

[12] P. Colli Franzone - L. F. Pavarino, Parallel Solver for reaction-diffusion systems in Computational Electrocardiology Mathematical Models and Methods in Applied Sciences, 14 (2004), 883-911. | DOI | MR | Zbl

[13] M. Costa - A. L. Goldberger - C.-K. Peng, Multiscale entropy analysis of biological signals. Phys Rev E, 71 (2005). | DOI | MR

[14] D. Di Bernardo - M. G. Signorini - S. Cerutti, A model of two non linear coupled oscillators for the study of heart beat dynamics Int. J. Bif Chaos, 8 (1998), 1975- 1985. | Zbl

[15] F. Domenichini - G. Pedrizzetti - B. Baccani, Three-dimensional filling flow into a model left ventricle; J Fluid Mech 539 (2005), 179-198. | DOI | MR | Zbl

[16] W. Einthoven, Die galvanometrische Registrirung des menschlichen Elektrokardioramms, zugleich eine Beurtheilung der Anwendung des Capillar-Elektrometers in der Physiologie. Pfulgers Arch. Ges. Physiol. 99 (1903).

[17] L. Glass - M. C. Mackey, From clocks to chaos P.U.P., Princeton (1988). | MR | Zbl

[18] G. Guarini - G. Fiorelli - A. Malliani - F. Violi, M. Volpe, Trattato Italiano di Medicina interna ``Teodori'', Soc. Ed. Universo, Roma (2001).

[19] Y. Ishikava - F. Mochimaru, Wavelet Theory-Based Analysis of High-Frequency, High-Resolution Electrocardiograms: A New Concept for Clinical Uses Progress in biomedical research 7 (2002), 179-184.

[20] J. Keener - J. Sneyd, Mathematical physiology Springer, New York (1998). | MR

[21] A. Malliani, Principles of cardiovascular neural regulation in health and disease, Kluwer (2000).

[22] D. B. Percival - A. T. Walden, Wavelet Methods for Time Series Analysis, Cambridge University Press (2000). | DOI | MR | Zbl

[23] T. Pogorelov, File Mathematica disponibile all'indirizzo web http://library.wolfram.com/infocenter/MathSource/4476/

[24] A. Quarteroni, Modeling the cardiovascular system - A Mathematical Adventure, SIAM News, 34 (5), (2001), Part I and 34 (6), (2001), Part II. | MR

[25] V. K. Rohatgi, An introduction to Probability Theory and Mathematical Statistics, Wiley, New York, (1976). | MR | Zbl

[26] L. Russo, La rivoluzione dimenticata Feltrinelli, Milano (1996). | MR

[27] A. N. Shiryayev, Probability, Springer-Verlag, New York (1984). | DOI | MR

[28] Task force of the european society of chardiology and the north american society of pacing and electrophysiology. Heart rate variability. Standards of measuremant, physiological interpretation and clinical use. Circulation, 93 (1996), 1043-1065.

[29] W. J. TOMPKINS ed., Biomedical Digital Signal Processing. Prentice Hall, Englewood Cliffs, N. J. (1993).

[30] D. Waller, A demonstration on man of electromotive changes accompanying the heart's beat. J Physiol 8 (1887), 229-234.

[31] W. Wessel et al. Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates, Physical Review E, 61 (2000), 733-739.

[32] http://www.physionet.org

[33] http://www.R-project.org