I moti quasi periodici del sistema solare e la stabilità I: Dagli epicicli al punto omoclino di Poincaré
Bollettino della Unione matematica italiana, Série 8, 10A (2007) no. 1, pp. 55-83

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The problem of stability of planetary motion is revisited with the aim of illustrating some emerging aspects from the historical development of our know- ledge. The note is divided in two parts. The first one is concerned with the classical methods and ends up with the work of Poincaré. The second one deals with the discoveries of the last 50 years.The first part of the note starts with the attempts to represent the motions of the planets as being quasiperiodic, actually by means of epicicles as in the classical theories. In this framework the Lindstedt's expansion method is illustrated by applying it to Duffing's equation. This introduces the main problem of classical astronomy, namely the role of resonances that shows up in either form of secular terms or of small divisors in the series expansions of the solutions of the equation. Then the discovery of the chaotic behaviour of orbits by Poincare� is recalled by illustrating in some detail the phenomenon of homoclinic intersections.
@article{BUMI_2007_8_10A_1_a2,
     author = {Giorgilli, Antonio},
     title = {I moti quasi periodici del sistema solare e la stabilit\`a {I:} {Dagli} epicicli al punto omoclino di {Poincar\'e}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {55--83},
     publisher = {mathdoc},
     volume = {Ser. 8, 10A},
     number = {1},
     year = {2007},
     zbl = {1277.70015},
     mrnumber = {2320481},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_1_a2/}
}
TY  - JOUR
AU  - Giorgilli, Antonio
TI  - I moti quasi periodici del sistema solare e la stabilità I: Dagli epicicli al punto omoclino di Poincaré
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 55
EP  - 83
VL  - 10A
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_1_a2/
LA  - it
ID  - BUMI_2007_8_10A_1_a2
ER  - 
%0 Journal Article
%A Giorgilli, Antonio
%T I moti quasi periodici del sistema solare e la stabilità I: Dagli epicicli al punto omoclino di Poincaré
%J Bollettino della Unione matematica italiana
%D 2007
%P 55-83
%V 10A
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_1_a2/
%G it
%F BUMI_2007_8_10A_1_a2
Giorgilli, Antonio. I moti quasi periodici del sistema solare e la stabilità I: Dagli epicicli al punto omoclino di Poincaré. Bollettino della Unione matematica italiana, Série 8, 10A (2007) no. 1, pp. 55-83. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_1_a2/