Problemi Variazionali Plebei
Bollettino della Unione matematica italiana, Série 8, 10A (2007) no. 1, pp. 1-23.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Nella vita quotidiana si eseguono delle operazioni istintive, come il camminare, il correre, il sollevarsi con le braccia, il masticare, che, se osservate con attenzione, si possono descrivere matematicamente. E ci sono pure degli strumenti molto primitivi, come il martello, l'apriscatole, le forbici, il coltello, il cui funzionamento dà luogo ad equazioni non banali. In tutti i casi, le soluzioni istintive ed empiriche rispettano un principio di economia, che può essere quello del minimo sforzo o del minimo tempo di esecuzione.
In everyday life we make some instintictive movements like walking, running, lifting ourselves with the arms, chewing, which, if carefully observed, can be mathematically described. And there are also some very primitive tools like hammer, can opener, scissors, knife, whose working yields non-trivial equations. In all these cases, the instinctive and empirical solutions satisfy an economy principle, which may be that of minimum effort or of minimum time of execution.
@article{BUMI_2007_8_10A_1_a0,
     author = {Villaggio, Piero },
     title = {Problemi {Variazionali} {Plebei}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {Ser. 8, 10A},
     number = {1},
     year = {2007},
     zbl = {0394.73093},
     mrnumber = {464828},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_1_a0/}
}
TY  - JOUR
AU  - Villaggio, Piero 
TI  - Problemi Variazionali Plebei
JO  - Bollettino della Unione matematica italiana
PY  - 2007
SP  - 1
EP  - 23
VL  - 10A
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_1_a0/
LA  - it
ID  - BUMI_2007_8_10A_1_a0
ER  - 
%0 Journal Article
%A Villaggio, Piero 
%T Problemi Variazionali Plebei
%J Bollettino della Unione matematica italiana
%D 2007
%P 1-23
%V 10A
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_1_a0/
%G it
%F BUMI_2007_8_10A_1_a0
Villaggio, Piero . Problemi Variazionali Plebei. Bollettino della Unione matematica italiana, Série 8, 10A (2007) no. 1, pp. 1-23. http://geodesic.mathdoc.fr/item/BUMI_2007_8_10A_1_a0/

[1] R. Mc N. Alexander, Mechanics and Scaling of Terrestrial Locomotion. In Scale Effects in Animal Locomotion. Ed. by T. J. Pedley. Academic Press (1977), 93-110.

[2] Burridge R. e Keller J. B., Peeling, Slipping and Cracking - Same One-Dimensional Free Boundary Problems in Mechanics, SIAM Review, 20, n. 1 (1978), 31-61. | DOI | MR | Zbl

[3] Dijksterhuis E. J., The Mechanization of the World Picture. Princeton Un. Press (1986). | MR | Zbl

[4] Fyffe A. e Peter I., The Handbook of Climbing. Pelham Books (1997).

[5] Giusti E., La matematica in cucina. Bollati Boringhieri (2004).

[6] Keller J. B., A theory of competitive Running, Physics Today. Sept. (1973), 43-47.

[7] Keller J. B., Mechanical Aspects of Athletics, Proc 7th U.S. National Congress of Applied Mechanics (1974), 22-26. | Zbl

[8] Margaria R., Sulla fisiologia e specialmente sul consumo energetico della marcia e della corsa a varie velocità ed inclinazioni del terreno, Atti Acc. Lincei, 7 (1938), 299-368.

[9] Mu Z. e Kazerounian K., Optimum Geometric Design of the Edge Curves for Cutting Blades, Mech. Based Design of Structures and Machines, 33, n. 2 (2005), 173-183.

[10] Oravas G., Lectures on the History of Technology and Engineering, Georg Olms Verlag (2004).

[11] Petrov Iu. P., Variational Methods in Optimum Control Theory, Academic Press (1968).

[12] Timoshenko S. P. e Woinowsky-Krieger S., Theory of Plates and Shells, Mc Graw-Hill (1959). | Zbl