On a recursive formula for the sequence of primes and applications to the twin prime problem
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 667-680
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
In this paper we give a recursive formula for the sequence of primes $\{p_n\}$ and apply it to find a necessary and sufficient condition in order that a prime number $p_{n+1}$ is equal to $p_{n}+2$. Applications of previous results are given to evaluate the probability that $p_{n+1}$ is of the form $p_{n}+2$; moreover we prove that the limit of this probability is equal to zero as $n$ goes to $\infty$. Finally, for every prime $p_n$ we construct a sequence whose terms that are in the interval $[p_n^2 - 2 , p_{n+1}^2-2[$ are the first terms of two twin primes. This result and some of its implications make furthermore plausible that the set of twin primes is infinite.
@article{BUMI_2006_8_9B_3_a9,
author = {Fiorito, Giovanni},
title = {On a recursive formula for the sequence of primes and applications to the twin prime problem},
journal = {Bollettino della Unione matematica italiana},
pages = {667--680},
year = {2006},
volume = {Ser. 8, 9B},
number = {3},
zbl = {1117.11009},
mrnumber = {MR2274119},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a9/}
}
TY - JOUR AU - Fiorito, Giovanni TI - On a recursive formula for the sequence of primes and applications to the twin prime problem JO - Bollettino della Unione matematica italiana PY - 2006 SP - 667 EP - 680 VL - 9B IS - 3 UR - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a9/ LA - en ID - BUMI_2006_8_9B_3_a9 ER -
Fiorito, Giovanni. On a recursive formula for the sequence of primes and applications to the twin prime problem. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 667-680. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a9/