On the rate of convergence of the Bézier-type operators
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 657-666

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

For bounded functions $f$ on an interval $I$, in particular, for functions of bounded p-th power variation on $I$ there is estimated the rate of pointwise convergence of the Bezier-type modification of the discrete Feller operators. In the main theorem the Chanturiya modulus of variation is used.
@article{BUMI_2006_8_9B_3_a8,
     author = {Anio{\l}, Gra\.zyna},
     title = {On the rate of convergence of the {B\'ezier-type} operators},
     journal = {Bollettino della Unione matematica italiana},
     pages = {657--666},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {3},
     year = {2006},
     zbl = {1182.41019},
     mrnumber = {2274118},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a8/}
}
TY  - JOUR
AU  - Anioł, Grażyna
TI  - On the rate of convergence of the Bézier-type operators
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 657
EP  - 666
VL  - 9B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a8/
LA  - en
ID  - BUMI_2006_8_9B_3_a8
ER  - 
%0 Journal Article
%A Anioł, Grażyna
%T On the rate of convergence of the Bézier-type operators
%J Bollettino della Unione matematica italiana
%D 2006
%P 657-666
%V 9B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a8/
%G en
%F BUMI_2006_8_9B_3_a8
Anioł, Grażyna. On the rate of convergence of the Bézier-type operators. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 657-666. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a8/