Well-posedness of optimization problems and Hausdorff metric on partial maps
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 645-656

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The object of this paper is the Hausdorff metric topology on partial maps with closed domains. This topological space is denoted by $(\mathcal{P}, H_\rho)$. An equivalence of well-posedness of constrained continuous problems is proved. By using the completeness of the Hausdorff metric on the space of usco maps with moving domains, the complete metrizability of $(\mathcal{P}, H_\rho)$ is investigated.
@article{BUMI_2006_8_9B_3_a7,
     author = {Caterino, Alessandro and Ceppitelli, Rita and Hol\`a, \v{L}ubica},
     title = {Well-posedness of optimization problems and {Hausdorff} metric on partial maps},
     journal = {Bollettino della Unione matematica italiana},
     pages = {645--656},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {3},
     year = {2006},
     zbl = {1177.54012},
     mrnumber = {2274117},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a7/}
}
TY  - JOUR
AU  - Caterino, Alessandro
AU  - Ceppitelli, Rita
AU  - Holà, Ľubica
TI  - Well-posedness of optimization problems and Hausdorff metric on partial maps
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 645
EP  - 656
VL  - 9B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a7/
LA  - en
ID  - BUMI_2006_8_9B_3_a7
ER  - 
%0 Journal Article
%A Caterino, Alessandro
%A Ceppitelli, Rita
%A Holà, Ľubica
%T Well-posedness of optimization problems and Hausdorff metric on partial maps
%J Bollettino della Unione matematica italiana
%D 2006
%P 645-656
%V 9B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a7/
%G en
%F BUMI_2006_8_9B_3_a7
Caterino, Alessandro; Ceppitelli, Rita; Holà, Ľubica. Well-posedness of optimization problems and Hausdorff metric on partial maps. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 645-656. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a7/