Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 583-610
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We propose a unified approach, based on methods from microlocal analysis, for characterizing the hypoellipticity and the local solvability in $C^\infty$ and Gevrey $G^\lambda$ classes of semilinear anisotropic partial differential operators with Gevrey nonlinear perturbations, in dimension $n \geq 3$. The conditions for our results are imposed on the sign of the lower order terms of the linear part of the operator, see Theorem 1.1 and Theorem 1.3 below.
@article{BUMI_2006_8_9B_3_a4,
author = {De Donno, Giuseppe and Oliaro, Alessandro},
title = {Hypoellipticity and local solvability of anisotropic {PDEs} with {Gevrey} nonlinearity},
journal = {Bollettino della Unione matematica italiana},
pages = {583--610},
publisher = {mathdoc},
volume = {Ser. 8, 9B},
number = {3},
year = {2006},
zbl = {1121.35029},
mrnumber = {2274114},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a4/}
}
TY - JOUR AU - De Donno, Giuseppe AU - Oliaro, Alessandro TI - Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity JO - Bollettino della Unione matematica italiana PY - 2006 SP - 583 EP - 610 VL - 9B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a4/ LA - en ID - BUMI_2006_8_9B_3_a4 ER -
%0 Journal Article %A De Donno, Giuseppe %A Oliaro, Alessandro %T Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity %J Bollettino della Unione matematica italiana %D 2006 %P 583-610 %V 9B %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a4/ %G en %F BUMI_2006_8_9B_3_a4
De Donno, Giuseppe; Oliaro, Alessandro. Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 583-610. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a4/