Artinian automorphisms of infinite groups
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 575-582
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
An automorphism a of a group G is called an artinian automorphism if for every strictly descending chain $H_1 > H_2 > \cdots > H_n > \cdots$ of subgroups of G there exists a positive integer $m$ such that $(H_n)^a = H_n$ for every $n \geq m$. In this paper we show that in many cases the group of all artinian automorphisms of $G$ coincides with the group of all power automorphisms of $G$.
@article{BUMI_2006_8_9B_3_a3,
author = {Leone, Antonella},
title = {Artinian automorphisms of infinite groups},
journal = {Bollettino della Unione matematica italiana},
pages = {575--582},
publisher = {mathdoc},
volume = {Ser. 8, 9B},
number = {3},
year = {2006},
zbl = {1119.20043},
mrnumber = {2274113},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a3/}
}
Leone, Antonella. Artinian automorphisms of infinite groups. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 575-582. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a3/