Artinian automorphisms of infinite groups
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 575-582

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

An automorphism a of a group G is called an artinian automorphism if for every strictly descending chain $H_1 > H_2 > \cdots > H_n > \cdots$ of subgroups of G there exists a positive integer $m$ such that $(H_n)^a = H_n$ for every $n \geq m$. In this paper we show that in many cases the group of all artinian automorphisms of $G$ coincides with the group of all power automorphisms of $G$.
@article{BUMI_2006_8_9B_3_a3,
     author = {Leone, Antonella},
     title = {Artinian automorphisms of infinite groups},
     journal = {Bollettino della Unione matematica italiana},
     pages = {575--582},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {3},
     year = {2006},
     zbl = {1119.20043},
     mrnumber = {2274113},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a3/}
}
TY  - JOUR
AU  - Leone, Antonella
TI  - Artinian automorphisms of infinite groups
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 575
EP  - 582
VL  - 9B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a3/
LA  - en
ID  - BUMI_2006_8_9B_3_a3
ER  - 
%0 Journal Article
%A Leone, Antonella
%T Artinian automorphisms of infinite groups
%J Bollettino della Unione matematica italiana
%D 2006
%P 575-582
%V 9B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a3/
%G en
%F BUMI_2006_8_9B_3_a3
Leone, Antonella. Artinian automorphisms of infinite groups. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 575-582. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a3/