Asymptotic stability of a semigroup generated by randomly connected Poisson driven differential equations
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 545-566

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the stochastic differential equation \begin{equation}\tag{1}dX(t) = a(X(t); \xi(t)) \, dt + \int_\Theta b(X(t); \theta) \mathcal{N}_p(dt; d\theta)\end{equation} for $t \geq 0$ with the initial condition $X(0) = x_{0}$. We give sufficient conditions for the asymptotic stability of the semigroup $\{P^{t}\}_{t \geq 0}$ generated by the stochastic differential equation (1).
@article{BUMI_2006_8_9B_3_a1,
     author = {Horbacz, Katarzyna},
     title = {Asymptotic stability of a semigroup generated by randomly connected {Poisson} driven differential equations},
     journal = {Bollettino della Unione matematica italiana},
     pages = {545--566},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {3},
     year = {2006},
     zbl = {1177.60058},
     mrnumber = {2274111},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a1/}
}
TY  - JOUR
AU  - Horbacz, Katarzyna
TI  - Asymptotic stability of a semigroup generated by randomly connected Poisson driven differential equations
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 545
EP  - 566
VL  - 9B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a1/
LA  - en
ID  - BUMI_2006_8_9B_3_a1
ER  - 
%0 Journal Article
%A Horbacz, Katarzyna
%T Asymptotic stability of a semigroup generated by randomly connected Poisson driven differential equations
%J Bollettino della Unione matematica italiana
%D 2006
%P 545-566
%V 9B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a1/
%G en
%F BUMI_2006_8_9B_3_a1
Horbacz, Katarzyna. Asymptotic stability of a semigroup generated by randomly connected Poisson driven differential equations. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 3, pp. 545-566. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_3_a1/