Conductor and separating degrees for sets of points in $\mathbb{P}^r$ and in $\mathbb{P}^1 \times \mathbb{P}^1$
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 397-421
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We attempt to generalize conductor degree's results, known in $\mathbb{P}^2$, to the case of 0-dimensional schemes of $\mathbb{P}^r$. In the first part of this paper, we consider the problem of characterizing the sequences generators's degrees of the conductor which are compatible with a fixed postulation (or Hilbert function) for a set of points in $\mathbb{P}^r$ and we determine the conductor degree of every point in a $r$-partial intersection. In addition, we define the separating degree of a point for a 0-dimensional subscheme of a smooth quadric $Q = \mathbb{P}^1 \times \mathbb{P}^1$ and we give some results in case of special subschemes.
@article{BUMI_2006_8_9B_2_a8,
author = {Marino, Lucia},
title = {Conductor and separating degrees for sets of points in $\mathbb{P}^r$ and in $\mathbb{P}^1 \times \mathbb{P}^1$},
journal = {Bollettino della Unione matematica italiana},
pages = {397--421},
year = {2006},
volume = {Ser. 8, 9B},
number = {2},
zbl = {1178.13007},
mrnumber = {2233144},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a8/}
}
TY - JOUR
AU - Marino, Lucia
TI - Conductor and separating degrees for sets of points in $\mathbb{P}^r$ and in $\mathbb{P}^1 \times \mathbb{P}^1$
JO - Bollettino della Unione matematica italiana
PY - 2006
SP - 397
EP - 421
VL - 9B
IS - 2
UR - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a8/
LA - en
ID - BUMI_2006_8_9B_2_a8
ER -
%0 Journal Article
%A Marino, Lucia
%T Conductor and separating degrees for sets of points in $\mathbb{P}^r$ and in $\mathbb{P}^1 \times \mathbb{P}^1$
%J Bollettino della Unione matematica italiana
%D 2006
%P 397-421
%V 9B
%N 2
%U http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a8/
%G en
%F BUMI_2006_8_9B_2_a8
Marino, Lucia. Conductor and separating degrees for sets of points in $\mathbb{P}^r$ and in $\mathbb{P}^1 \times \mathbb{P}^1$. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 397-421. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a8/