Cohomology of Tango bundle on $\mathbb{P}^5$
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 319-326
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
The Tango bundle $T$ is defined as the pull-back of the Cayley bundle over a smooth quadric $Q_5$ in $\mathbb{P}_6$ via a map $f$ existing only in characteristic 2 and factorizing the Frobenius $\varphi$. The cohomology of $T$ is computed in terms of $S \otimes C$, $\varphi^*(C)$, $\text{Sym}^2(C)$ and $C$, which we handle with Borel-Bott-Weil theorem.
@article{BUMI_2006_8_9B_2_a5,
author = {Faenzi, Daniele},
title = {Cohomology of {Tango} bundle on $\mathbb{P}^5$},
journal = {Bollettino della Unione matematica italiana},
pages = {319--326},
publisher = {mathdoc},
volume = {Ser. 8, 9B},
number = {2},
year = {2006},
zbl = {1178.14011},
mrnumber = {2233141},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a5/}
}
Faenzi, Daniele. Cohomology of Tango bundle on $\mathbb{P}^5$. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 319-326. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a5/