Cohomology of Tango bundle on $\mathbb{P}^5$
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 319-326

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The Tango bundle $T$ is defined as the pull-back of the Cayley bundle over a smooth quadric $Q_5$ in $\mathbb{P}_6$ via a map $f$ existing only in characteristic 2 and factorizing the Frobenius $\varphi$. The cohomology of $T$ is computed in terms of $S \otimes C$, $\varphi^*(C)$, $\text{Sym}^2(C)$ and $C$, which we handle with Borel-Bott-Weil theorem.
@article{BUMI_2006_8_9B_2_a5,
     author = {Faenzi, Daniele},
     title = {Cohomology of {Tango} bundle on $\mathbb{P}^5$},
     journal = {Bollettino della Unione matematica italiana},
     pages = {319--326},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {2},
     year = {2006},
     zbl = {1178.14011},
     mrnumber = {2233141},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a5/}
}
TY  - JOUR
AU  - Faenzi, Daniele
TI  - Cohomology of Tango bundle on $\mathbb{P}^5$
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 319
EP  - 326
VL  - 9B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a5/
LA  - en
ID  - BUMI_2006_8_9B_2_a5
ER  - 
%0 Journal Article
%A Faenzi, Daniele
%T Cohomology of Tango bundle on $\mathbb{P}^5$
%J Bollettino della Unione matematica italiana
%D 2006
%P 319-326
%V 9B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a5/
%G en
%F BUMI_2006_8_9B_2_a5
Faenzi, Daniele. Cohomology of Tango bundle on $\mathbb{P}^5$. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 319-326. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a5/