Existence and uniqueness for an integro-differential equation with singular kernel
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 299-309
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
In this paper we study the evolutive problem of linear viscoelasticity with a singular kernel memory $G'$. We assume that $G'$ presents an initial singularity, so that it is not a $L^1$-function in time, whereas the relaxation function $G$ is integrable at $t = 0$. By applying the Fourier transform method, we prove a theorem of existence and uniqueness of the weak solutions in a functional space whose definition is strictly related to the properties of the kernel memory.
@article{BUMI_2006_8_9B_2_a3,
author = {Berti, Valeria},
title = {Existence and uniqueness for an integro-differential equation with singular kernel},
journal = {Bollettino della Unione matematica italiana},
pages = {299--309},
year = {2006},
volume = {Ser. 8, 9B},
number = {2},
zbl = {1178.45011},
mrnumber = {MR2233139},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a3/}
}
TY - JOUR AU - Berti, Valeria TI - Existence and uniqueness for an integro-differential equation with singular kernel JO - Bollettino della Unione matematica italiana PY - 2006 SP - 299 EP - 309 VL - 9B IS - 2 UR - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a3/ LA - en ID - BUMI_2006_8_9B_2_a3 ER -
Berti, Valeria. Existence and uniqueness for an integro-differential equation with singular kernel. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 299-309. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a3/