Existence and uniqueness for an integro-differential equation with singular kernel
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 299-309

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we study the evolutive problem of linear viscoelasticity with a singular kernel memory $G'$. We assume that $G'$ presents an initial singularity, so that it is not a $L^1$-function in time, whereas the relaxation function $G$ is integrable at $t = 0$. By applying the Fourier transform method, we prove a theorem of existence and uniqueness of the weak solutions in a functional space whose definition is strictly related to the properties of the kernel memory.
@article{BUMI_2006_8_9B_2_a3,
     author = {Berti, Valeria},
     title = {Existence and uniqueness for an integro-differential equation with singular kernel},
     journal = {Bollettino della Unione matematica italiana},
     pages = {299--309},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {2},
     year = {2006},
     zbl = {1178.45011},
     mrnumber = {MR2233139},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a3/}
}
TY  - JOUR
AU  - Berti, Valeria
TI  - Existence and uniqueness for an integro-differential equation with singular kernel
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 299
EP  - 309
VL  - 9B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a3/
LA  - en
ID  - BUMI_2006_8_9B_2_a3
ER  - 
%0 Journal Article
%A Berti, Valeria
%T Existence and uniqueness for an integro-differential equation with singular kernel
%J Bollettino della Unione matematica italiana
%D 2006
%P 299-309
%V 9B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a3/
%G en
%F BUMI_2006_8_9B_2_a3
Berti, Valeria. Existence and uniqueness for an integro-differential equation with singular kernel. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 299-309. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a3/