Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 485-504
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We prove Harnack inequality for weak solutions to quasilinear subelliptic equation of the following kind \begin{equation*}\tag{*}\sum_{J=1}^{m} X_{j}^{*}A_{j}(x, u(x), Xu(x)) + B(x, u(x), Xu(x)) = 0,\end{equation*} where $X_{1}, \ldots, X_{m}$ are a system of non commutative locally Lipschitz vector fields. As a consequence, the weak solutions of (*) are continuous.
@article{BUMI_2006_8_9B_2_a11,
author = {Di Fazio, Giuseppe and Zamboni, Pietro},
title = {Local regularity of solutions to quasilinear subelliptic equations in {Carnot} {Caratheodory} spaces},
journal = {Bollettino della Unione matematica italiana},
pages = {485--504},
year = {2006},
volume = {Ser. 8, 9B},
number = {2},
zbl = {1178.35163},
mrnumber = {2233147},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a11/}
}
TY - JOUR AU - Di Fazio, Giuseppe AU - Zamboni, Pietro TI - Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces JO - Bollettino della Unione matematica italiana PY - 2006 SP - 485 EP - 504 VL - 9B IS - 2 UR - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a11/ LA - en ID - BUMI_2006_8_9B_2_a11 ER -
%0 Journal Article %A Di Fazio, Giuseppe %A Zamboni, Pietro %T Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces %J Bollettino della Unione matematica italiana %D 2006 %P 485-504 %V 9B %N 2 %U http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a11/ %G en %F BUMI_2006_8_9B_2_a11
Di Fazio, Giuseppe; Zamboni, Pietro. Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 485-504. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a11/