Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 485-504

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove Harnack inequality for weak solutions to quasilinear subelliptic equation of the following kind \begin{equation*}\tag{*}\sum_{J=1}^{m} X_{j}^{*}A_{j}(x, u(x), Xu(x)) + B(x, u(x), Xu(x)) = 0,\end{equation*} where $X_{1}, \ldots, X_{m}$ are a system of non commutative locally Lipschitz vector fields. As a consequence, the weak solutions of (*) are continuous.
@article{BUMI_2006_8_9B_2_a11,
     author = {Di Fazio, Giuseppe and Zamboni, Pietro},
     title = {Local regularity of solutions to quasilinear subelliptic equations in {Carnot} {Caratheodory} spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {485--504},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {2},
     year = {2006},
     zbl = {1178.35163},
     mrnumber = {2233147},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a11/}
}
TY  - JOUR
AU  - Di Fazio, Giuseppe
AU  - Zamboni, Pietro
TI  - Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 485
EP  - 504
VL  - 9B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a11/
LA  - en
ID  - BUMI_2006_8_9B_2_a11
ER  - 
%0 Journal Article
%A Di Fazio, Giuseppe
%A Zamboni, Pietro
%T Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces
%J Bollettino della Unione matematica italiana
%D 2006
%P 485-504
%V 9B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a11/
%G en
%F BUMI_2006_8_9B_2_a11
Di Fazio, Giuseppe; Zamboni, Pietro. Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 2, pp. 485-504. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_2_a11/