Relaxation and gamma-convergence of supremal functionals
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 101-132
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We prove that the $\Gamma$-limit in $L^\infty_\mu$ of a sequence of supremal functionals of the form $F_k (u)=\operatorname{\mu-ess\,sup}_\Omega f_k(x, u)$ is itself a supremal functional. We show by a counterexample that, in general, the function which represents the $\Gamma$-lim $F(\cdot, B)$ of a sequence of functionals $F_k(u, B)= \operatorname{\mu-ess\,sup}_B f_k(x,u)$ can depend on the set $B$ and wegive a necessary and sufficient condition to represent $F$ in the supremal form$F(u, B)= \operatorname{\mu-ess\,sup}_B f(x,u)$. As a corollary, if $f$ represents a supremal functional, then the level convex envelope of $f$ represents its weak* lower semicontinuous envelope.
@article{BUMI_2006_8_9B_1_a5,
author = {Prinari, Francesca},
title = {Relaxation and gamma-convergence of supremal functionals},
journal = {Bollettino della Unione matematica italiana},
pages = {101--132},
year = {2006},
volume = {Ser. 8, 9B},
number = {1},
zbl = {1178.49018},
mrnumber = {MR2204903},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_1_a5/}
}
Prinari, Francesca. Relaxation and gamma-convergence of supremal functionals. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 101-132. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_1_a5/