Relaxation and gamma-convergence of supremal functionals
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 101-132

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove that the $\Gamma$-limit in $L^\infty_\mu$ of a sequence of supremal functionals of the form $F_k (u)=\operatorname{\mu-ess\,sup}_\Omega f_k(x, u)$ is itself a supremal functional. We show by a counterexample that, in general, the function which represents the $\Gamma$-lim $F(\cdot, B)$ of a sequence of functionals $F_k(u, B)= \operatorname{\mu-ess\,sup}_B f_k(x,u)$ can depend on the set $B$ and wegive a necessary and sufficient condition to represent $F$ in the supremal form$F(u, B)= \operatorname{\mu-ess\,sup}_B f(x,u)$. As a corollary, if $f$ represents a supremal functional, then the level convex envelope of $f$ represents its weak* lower semicontinuous envelope.
@article{BUMI_2006_8_9B_1_a5,
     author = {Prinari, Francesca},
     title = {Relaxation and gamma-convergence of supremal functionals},
     journal = {Bollettino della Unione matematica italiana},
     pages = {101--132},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {1},
     year = {2006},
     zbl = {1178.49018},
     mrnumber = {MR2204903},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_1_a5/}
}
TY  - JOUR
AU  - Prinari, Francesca
TI  - Relaxation and gamma-convergence of supremal functionals
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 101
EP  - 132
VL  - 9B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_1_a5/
LA  - en
ID  - BUMI_2006_8_9B_1_a5
ER  - 
%0 Journal Article
%A Prinari, Francesca
%T Relaxation and gamma-convergence of supremal functionals
%J Bollettino della Unione matematica italiana
%D 2006
%P 101-132
%V 9B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_1_a5/
%G en
%F BUMI_2006_8_9B_1_a5
Prinari, Francesca. Relaxation and gamma-convergence of supremal functionals. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 101-132. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_1_a5/