A simple necessary and sufficient condition for well-posedness of $2 \times 2$ differential systems with time-dependent coefficients
Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 215-220

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Given the Cauchy Problem \[\partial_t u(x,t)+ A(t)\partial_x u(x,t)=0 \qquad u(0,x)=u_0(x)\] Nishitani [N], by making use of a change of basis by a constant matrix, transformed the real, analytic, hyperbolic matrix \[A(t)=\left(\begin{array}{cc} d(t) a(t) \\b(t) -d(t) \\ \end{array}\right) \qquad t\in [0, T]\] into the complex matrix \[A^\sharp(t)=\left(\begin{array}{cc}c^\sharp(t) a^\sharp(t) \\a^\sharp(t) -c^\sharp(t) \\\end{array} \right)= \left(\begin{array}{cc} i \frac{a-b}{2} \frac{a+b}{2}+id \\ \frac{a+b}{2}-id -i \frac{a-b}{2} \\ \end{array}\right)\]and showed that the given Cauchy Problem is well posed in \( C^\infty\) in a neighborhood ofzero if and only if (see also [MS]) the following condition \[h|a^\sharp |^2 \geq C t^2 |D^\sharp|^2\] is satisfied, where \[D^\sharp= \dot{a}^\sharp c^\sharp- \dot{c}^\sharp a^\sharp\ \text{e} h=-detA=|a^\sharp |^2- |c^\sharp |^2.\] In this short note, we give a very simple condition, which is equivalent to that of Nishitani (and then a necessary and sufficient for the Well-Posedness), but where only the elements of appear and not their derivatives.
@article{BUMI_2006_8_9B_1_a10,
     author = {Mencherini, Lorenzo},
     title = {A simple necessary and sufficient condition for well-posedness of $2 \times 2$ differential systems with time-dependent coefficients},
     journal = {Bollettino della Unione matematica italiana},
     pages = {215--220},
     publisher = {mathdoc},
     volume = {Ser. 8, 9B},
     number = {1},
     year = {2006},
     zbl = {1150.35065},
     mrnumber = {2204908},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_1_a10/}
}
TY  - JOUR
AU  - Mencherini, Lorenzo
TI  - A simple necessary and sufficient condition for well-posedness of $2 \times 2$ differential systems with time-dependent coefficients
JO  - Bollettino della Unione matematica italiana
PY  - 2006
SP  - 215
EP  - 220
VL  - 9B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_1_a10/
LA  - en
ID  - BUMI_2006_8_9B_1_a10
ER  - 
%0 Journal Article
%A Mencherini, Lorenzo
%T A simple necessary and sufficient condition for well-posedness of $2 \times 2$ differential systems with time-dependent coefficients
%J Bollettino della Unione matematica italiana
%D 2006
%P 215-220
%V 9B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_1_a10/
%G en
%F BUMI_2006_8_9B_1_a10
Mencherini, Lorenzo. A simple necessary and sufficient condition for well-posedness of $2 \times 2$ differential systems with time-dependent coefficients. Bollettino della Unione matematica italiana, Série 8, 9B (2006) no. 1, pp. 215-220. http://geodesic.mathdoc.fr/item/BUMI_2006_8_9B_1_a10/